В какой последовательности происходит процесс редупликации днк. Что такое редупликация днк. Молекулярный механизм репликации

Репликация ДНК - это процесс ее удвоения перед делением клетки. Иногда говорят «редупликация ДНК». Удвоение происходит в S-фазе интерфазы клеточного цикла .

Очевидно, самокопирование генетического материала в живой природе есть необходимость. Только так дочерние образующихся при делении клетки могут содержать столько же ДНК, сколько его изначально было в исходной. Благодаря репликации все генетически запрограммированные особенности строения и метаболизма передаются в ряду поколений.

В процессе деления клетки каждая молекула ДНК из пары идентичных отходит в свою дочернюю клетку. Таким образом обеспечивается точная передача наследственной информации.

При синтезе ДНК потребляется энергия, т. е. это энергозатратный процесс.

Механизм репликации ДНК

Молекула ДНК сама по себе (без удвоения) представляет собой двойную спираль. В процессе редупликации водородные связи между двумя ее комплементарными цепями разрываются. И на каждой отдельной цепи, которая теперь служит шаблоном-матрицей, строится новая комплиментарная ей цепь. Таким образом образуются две молекулы ДНК. У каждой одна цепь достается ей от материнской ДНК, вторая - вновь синтезированная. Поэтому механизм репликации ДНК является полуконсервативным (одна цепь старая, одна новая). Такой механизм репликации был доказан в 1958 году.

В молекуле ДНК цепи антипараллельны. Это значит, что одна нить идет в направлении от 5" конца к 3", а комплементарная ей - наоборот. Цифры 5 и 3 обозначают номера атомов углерода в дезоксирибозе, входящей в состав каждого нуклеотида. Через эти атомы нуклеотиды связаны между собой фосфодиэфирными связями. И там, где у одной цепи 3" связи, у другой - 5", так как она перевернута, т. е. идет в другом направлении. Для наглядности можно представить, что вы положили руку на руку, как первоклашка, сидящий за партой.

Основной фермент, который выполняет наращивание новой нити ДНК, способен делать это только в одном направлении. А именно: присоединять новый нуклеотид только к 3" концу. Таким образом, синтез может идти только в направлении от 5" к 3".

Цепи антипараллельны, значит синтез должен идти на них в разных направлениях. Если бы цепи ДНК сначала полностью расходились, а потом на них уже строилась новая комплементарная, то это не было бы проблемой. В действительности же цепи расходятся в определенных точках начала репликации , и в этих местах на матрицах сразу начинается синтез.

Формируются так называемые репликационные вилки . При этом на одной материнской цепи синтез идет в сторону расхождения вилки, и этот синтез происходить непрерывно, без разрывов. На второй матрице синтез идет в обратную сторону от направления расхождения цепей исходной ДНК. Поэтому такой обратный синтез может идти только кусками, которые называются фрагментами Оказаки . Позже такие фрагменты «сшиваются» между собой.

Дочерняя цепь, которая реплицируется непрерывно, называется лидирующей, или ведущей . Та, которая синтезируется через фрагменты Оказаки, - запаздывающей, или отстающей , так как фрагментарная репликация выполняется медленнее.

На схеме нити родительской ДНК постепенно расходятся в направлении, в котором идет синтез ведущей дочерней цепи. Синтез отстающей цепи идет в обратную расхождению сторону, поэтому вынужден выполняться кусками.

Другой особенностью основного фермента синтеза ДНК (полимеразы) является то, что он не может сам начать синтез, только продолжить. Ему необходима затравка, или праймер . Поэтому на родительской нити сначала синтезируется небольшой комплементарный участок РНК, потом уже происходит наращивание цепи с помощью полимеразы. Позже праймеры удаляются, дыры застраиваются.

На схеме затравки показаны только на отстающей цепи. На самом деле они есть и на лидирующей. Однако здесь нужен только один праймер на вилку.

Поскольку цепи материнской ДНК не всегда расходятся с концов, а в точках инициализации, то на самом деле формируются не столько вилки, сколько глазки, или пузыри.

В каждом пузыре может быть две вилки, т. е. цепи будут расходиться в двух направлениях. Однако могут только в одном. Если все же расхождение двунаправлено, то из точки инициализации на одной нити ДНК синтез будет идти в двух направлениях - вперед и назад. При этом в одну сторону будет выполняться непрерывный синтез, а в другую - фрагментами Оказаки.

ДНК прокариот не линейна, а имеет кольцевую структуру и лишь одну точку начала репликации.

На схеме красным и синим цветом показаны две нити родительской молекулы ДНК. Новые синтезирующиеся нити показаны пунктиром.

У прокариот самокопирование ДНК выполняется быстрее, чем у эукариот. Если скорость редупликации у эукариот составляет сотни нуклеотидов в секунду, то у прокариот достигает тысячи и более.

Ферменты репликации

Репликацию ДНК обеспечивает целый комплекс ферментов, который называется реплисомой . Всего ферментов и белков репликации более 15. Ниже перечислены наиболее значимые.

Основным ферментом репликации является уже упомянутая ДНК-полимераза (на самом деле существует несколько разных), которая непосредственно осуществляет наращивание цепи. Это не единственная функция фермента. Полимераза способна «проверять», какой нуклеотид пытается присоединиться к концу. Если неподходящий, то она его удаляет. Другими словами, частичная репарация ДНК, т. е. ее исправление ошибок репликации, происходит уже на этапе синтеза.

Нуклеотиды, находящиеся в нуклеоплазме (или цитоплазме у бактерий), существуют в форме трифосфатов, т. е. это не нуклеотиды, а дезоксинуклеозидтрифосфаты (дАТФ, дТТФ, дГТФ, дЦТФ). Они похожи на АТФ , у которой три фосфатных остатка, два из которых связаны макроэргической связью. При разрыве таких связей выделяется много энергии. Также и у дезоксинуклеозидтрифосфатов две связи макроэргические. Полимераза отделяет два последних фосфата и использует выделяющуюся энергию на реакцию полимеризации ДНК.

Фермент хеликаза разделяет нити матричной ДНК, разрывая водородные связи между ними.

Поскольку молекула ДНК представляет собой двойную спираль, то разрыв связей провоцирует еще большее ее скручивание. Представьте канат из двух закрученных относительно друг друга веревок, и вы с одной стороны за концы тянете одну вправо, другую - влево. Сплетенная часть станет еще больше скручиваться, будет более тугой.

Для устранения подобного напряжения необходимо, чтобы еще неразошедшаяся двойная спираль быстро крутилась вокруг своей оси, «сбрасывая» возникающую сверхспирализацию. Однако это слишком энергозатратно. Поэтому в клетках реализуется другой механизм. Фермент топоизомераза разрывает одну из нитей, пропускает через разрыв второю и снова сшивает первую. Чем и устраняются возникающие супервитки.

Разошедшиеся в результате действия хеликазы нити матричной ДНК пытаются опять соединиться своими водородными связями. Чтобы этого не произошло, в действие вступают ДНК-связывающие белки . Это не ферменты в том понимании, что реакций они не катализируют. Такие белки прикрепляются к нити ДНК на всем ее протяжении и не дают комплементарным цепям матричной ДНК сомкнуться.

Праймеры синтезируются РНК-праймазой . А удаляются экзонуклеазой . После удаления праймера «дыру» застраивает другой тип полимеразы. Однако при этом отдельные участки ДНК не сшиваются.

Отдельные части синтезируемой цепи сшиваются таким ферментом репликации как ДНК-лигаза .

1. Когда происходит репликация? - В синтетической фазе интерфазы, задолго до деления клетки. Период между репликацией и профазой митоза называется постсинтетическая фаза интерфазы, в нем клетка продолжает расти и проверяет, правильно ли произошло удвоение.

2. Если до удвоения было 46 хромосом, то сколько будет после удвоения? - Количество хромосом при удвоении ДНК не изменяется. До удвоения у человека 46 одинарных хромосом (состоящих из одной двойной цепочки ДНК), а после удвоения - 46 двойных хромосом (состоящих из двух одинаковых двойных цепочек ДНК, соединенных между собой в центромере).

3. Зачем нужна репликация? - Чтобы во время митоза каждая дочерняя клетка могла получить свою копию ДНК. При митозе каждая из 46 двойных хромосом делится на две одинарные; получается два набора по 46 одинарных хромосом; эти два набора расходятся в две дочерние клетки.

Три принципа строения ДНК

Полуконсервативность - каждая дочерняя ДНК содержит одну цепочку из материнской ДНК и одну новосинтезированную.

Комплементарность - АТ/ЦГ. Напротив аденина одной цепи ДНК всегда стоит тимин другой цепи ДНК, напротив цитозина всегда стоит гуанин.

Антипараллельность - цепочки ДНК лежат друг к другу противоположными концами. Эти концы не изучают в школе, поэтому чуть подробнее (и далее - в дебри).

Мономером ДНК является нуклеотид, центральной частью нуклеотида - дезоксирибоза. У неё 5 атомов углерода (на ближайшем рисунке у левой нижней дезоксирибозы атомы пронумерованы). Смотрим: к первому атому углерода присоединяется азотистое основание, к пятому - фосфорная кислота данного нуклеотида, третий атом готов присоединить фосфорную кислоту следующего нуклеотида. Таким образом, у любой цепочки ДНК есть два конца:

  • 5"-конец, на нем располагается фосфорная кислота;
  • 3"-конец, на нем располагается рибоза.

Правило антипараллельности состоит в том, что на одном конце двойной цепи ДНК (например, на верхнем конце ближайшего рисунка) одна цепь имеет 5"-конец, а другая 3"-конец. Для процесса репликации важно, что ДНК-полимераза может удлинять только 3"-конец. Цепочка ДНК может расти только своим 3"-концом.

На этом рисунке процесс удвоения ДНК идет снизу вверх. Видно, что левая цепочка растет в том же направлении, а правая – в противоположном.

На следующем рисунке вверхняя новая цепочка ("ведущая цепь") удлиняется в том же направлении, в котором происходит удвоение. Нижняя новая цепочка ("отстающая цепь") не может удлиняться в том же направлении, потому что там у нее 5"-конец, который, как мы помним, не растёт. Поэтому нижняя цепочка растет с помощью коротких (100-200 нуклеотидов) фрагментов Оказаки, каждый из которых растет в 3"-направлении. Каждый фрагмент Оказаки растет от 3"-конца праймера ("РНК-затравки", на рисунке праймеры красные).

Ферменты репликации

Overall direction of replication - направление, в котором происходит удвоение ДНК.
Parental DNA - старая (материнская) ДНК.
Зеленое облако рядом с надписью "Parental DNA" - фермент хеликаза, который разрывает водородные связи между азотистыми основаниями старой (материнской) цепочки ДНК.
Серые овальчики на только что оторванных друг от друга цепочках ДНК - дестабилизирующие белки, которые не дают цепочкам ДНК соединиться.
DNA pol III - ДНК-полимераза, которая присоединяет новые нуклеотиды к 3"-концу верхней (лидирующей, синтезирующейся неприрывно) цепочки ДНК (Leading strand) .
Primase - фермент праймаза, которая делает праймер (красную деталь от Лего). Теперь считаем праймеры слева направо:

  • первый праймер еще недоделан, его как раз сейчас делает праймаза;
  • от второго по счету праймера ДНК-полимераза строит ДНК - в направлении, противоположном направлению удвоения ДНК, но зато в направлении 3"-конца;
  • от третьего по счету праймера цепочка ДНК уже построена (Lagging strand) , она подошла вплотную к четвертому по счету праймеру;
  • четвертый по счету праймер короче всех, потому что ДНК-полимераза (DNA pol I) удаляет его (он же РНК, в ДНК ему делать нечего, от него нам был нужен только правильный конец) и заменяет на ДНК;
  • пятого праймера на рисунке уже нет, он вырезан полностью, на его месте остался разрыв. ДНК-лигаза (DNA ligase) сшивает этот разрыв, чтобы нижняя (отстающая) цепочка ДНК была целой.

На суперкартине не обозначен фермент топоизомераза, но дальше а тестиках он будет фигурировать, так что скажем и про него пару слов. Вот вам веревка, состоящая из трех больших жил. Если три товарища возьмутся за эти три жилы и начнут тянуть их в три разные стороны, то очень скоро веревка перестанет расплетаться и завьется в тугие петли. С ДНК, которая представляет собой двухжильную веревку, могло бы произойти то же самое, если бы не топоизомераза.



Топоизомереза разрезает одну из двух нитей ДНК, после чего (второй рисунок, красная стрелка) ДНК проворачивается вокруг одной из своих цепей, так что тугие петли не образуются (топологический стресс снижается).

Концевая недорепликация

Из суперкартины с ферментами репликации понятно, что на месте, оставшемся после удаления праймера, ДНК-полимераза достраивает следующий по счету фрагмент Оказаки. (Правда понятно? Если что, фрагменты Оказаки на суперкартине обозначены цифрами в кружочках.) Когда репликация на суперкартине дойдет до своего логического (левого) конца, то у последнего (крайнего левого) фрагмента Оказаки не будет «следующего», поэтому некому будет достроить ДНК на пустом месте, получившемся после удаления праймера.

Вот вам еще рисунок. Черная цепочка ДНК - старая, материнская. Удвоение ДНК, в отличие от суперкартины, происходит слева направо. Поскольку у новой (зеленой) ДНК справа 5"-конец, то она является отстающей и удлиняется отдельными фрагметами (Оказаки). Каждый фрагмент Оказаки растет от 3"-конца своего праймера (синего прямоугольника). Праймеры, как мы помним, удаляются ДНК-полимеразой, которая на этом месте достраивает следующий фрагмент Оказаки (этот процесс обозначен красным многоточием). На конце хромосомы некому заделать этот участок, так как нету следующего фрагмента Оказаки, там уже пустое место (Gap) . Таким образом, после каждой репликации у дочерних хромосом укорачиваются оба 5"-конца (концевая недорепликация) .

Стволовые клетки (в коже, красном костном мозге, семенниках) должны делиться гораздо больше, чем 60 раз. Поэтому в них функционирует фермент теломераза, который после каждой репликации удлиняет теломеры. Теломераза удлиняет выступающий 3"-конец ДНК, так что он увеличивается до размера фрагмента Оказаки. После этого праймаза синтезирует на нем праймер, и ДНК-полимераза удлиняет недореплицированный 5"-конец ДНК.

Тестики

1. Репликация - это процесс, в котором:
А) происходит синтез транспортных РНК;
Б) происходит синтез (копирование) ДНК;
В) рибосомы узнают антикодоны;
Г) образуются пептидные связи.

2. Соотнесите функции ферментов, участвующих в репликации прокариот, с их названиями.

3. Во время репликации в эукариотических клетках удаление праймеров
А) осуществляется ферментом только с ДНК-азной активностью
Б) образует фрагменты Оказаки
В) происходит только в отстающих цепях
Г) происходит только в ядре

4. Если Вы проэкстрагируете ДНК бактериофага fX174, вы обнаружите, что в его составе находится 25% A, 33% T, 24% G, и 18% C. Как Вы могли бы обьяснить эти результаты?
А) Результаты эксперимента неправильные; где-то произошла ошибка.
Б) Можно было бы допустить, что процентное содержание A приблизительно равно таковому T, что также справедливо для C и G. Следовательно, правило Чаргаффа не нарушается, ДНК является двуцепочечной и реплицируется полуконсервативно.
В) Поскольку процентные соотношения A и T и, соответственно, C и G различные, ДНК представляет собой одну цепь; она реплицируется при помощи особенного фермента, следующего особенному механизму репликации с одной цепью в качестве матрицы.
Г) Поскольку ни A не равно T, и ни G не равно C, то ДНК должна быть одноцепочечной, она реплицируется путем синтеза комплементарной цепи и использованием этой двуцепочечной формы как матрицы.

5. Диаграмма относится к репликации двуцепочечной ДНК. Для каждого из квадратов I, II, III выберите один фермент, который функционирует на этом участке.


А) Теломераза
Б) ДНК-топоизомераза
В) ДНК-полимераза
Г) ДНК-геликаза
Д) ДНК-лигаза

6. Культура бактерий из среды с легким изотопом азота (N-14) перенесли в среду, содержащую тяжелый изотоп (N-15) на время, соответствующее одному делению, а затем вернули в среду с легким изотопом азота. Анализ состава ДНК бактерий после периода, соответствующего двум репликациям, показал:

Варианты
ответа
ДНК
легкая средняя тяжелая
А 3/4 1/4 -
Б 1/4 3/4 -
В - 1/2 1/2
Г 1/2 1/2 -

7. Одно редкое генетическим заболевание характеризуется иммунодефицитом, отставанием в умственном и физическом развитии и микроцефалией. Предположим, что в экстракте ДНК пациента с этим синдромом вы обнаружили почти одинаковые количества длинных и очень коротких отрезков ДНК. Какой фермент у этого пациента наиболее вероятно отсутствует/дефектный?
А) ДНК-лигаза
Б) Топоизомераза
В) ДНК-полимераза
Г) Геликаза

8. Молекула ДНК, представляет собой двойную спираль, содержащую четыре различных типа азотистых оснований. Какое из следующих утверждений в отношении как репликации, так и химического строения ДНК, является правильным?
A) Последовательности оснований двух цепей одни и те же.
B) В двойной цепи ДНК содержание пуринов равно содержанию пиримидинов.
C) Обе цепи синтезируются в направлении 5’→3’ непрерывно.
D) Присоединение первого основания вновь синтезируемой нуклеиновой кислоты катализируется ДНК-полимеразой.
E) Активность ДНК-полимеразы по исправлению ошибок осуществляется в направлении 5’→3’.

9. Большинство ДНК-полимераз обладает также активностью:
А) лигазной;
Б) эндонуклеазной;
В) 5"-экзонуклеазной;
Г) 3"-экзонуклеазной.

10. ДНК-хеликаза - это ключевой фермент репликации ДНК, раскручивающий двуцепочечную ДНК до одноцепочечной. Ниже описан эксперимент, посвященный выяснению свойств этого фермента.

Какое из следующих утверждений относительно этого эксперимента является правильным?
А) Полоса, появляющаяся в верхней части геля, является только ssДНК, величиной 6,3 kb.
Б) Полоса, появляющаяся в нижней части геля, это меченная 300bp ДНК.
В) Если гибридизованную ДНК обработать только ДНК хеликазой и довести реакцию до конца, расположение полос выглядит так, как изображено на дорожке 3 на рисунке b.
Г) Если гибридизованную ДНК обработать только кипячением без обработки хеликазой, расположение полос выглядит как изображено на дорожке 2 на рисунке b.
Д) Если гибридизованную ДНК обработать только прокипяченной хеликазой, расположение полос выглядит как изображено на дорожке 1 на рисунке b.

Окружная олимпиада 2001
- всероссийская олимпиада 2001
- международная олимпиада 2001
- международная олимпиада 1991
- международная олимпиада 2008
- окружная олимпиада 2008
- международная олимпиада 2010
Полные тексты этих олимпиад можно найти .

Строение и функции нуклеиновых кислот АТФ

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК) .

Строение и функции ДНК

ДНК - полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение - некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК - 2 нм, расстояние между соседними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.



Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина - всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности . Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина - тимину («правило Чаргаффа» ), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

Репликация (редупликация) ДНК

Репликация ДНК - процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая - вновь синтезированной. Такой способ синтеза называется полуконсервативным .

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка . При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3"-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3"-конца к 5"-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3"–5" синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей . На цепи 5"–3" - прерывисто, фрагментами (фрагменты Оказаки ), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей ).

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера ). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации - репликон .

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации ). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК - полимер, мономерами которой являются рибонуклеотиды . В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК : 1) информационная (матричная) РНК - иРНК (мРНК), 2) транспортная РНК - тРНК, 3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса - 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3"-концу акцепторного стебля. Антикодон - три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса - 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы - органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК : 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК : 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) - универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты - в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

Репликация - это механизм самокопирования и основное свойство наследственного материала, которым выступают молекулы ДНК.

Особенностью ДНК является то, что обычно ее молекулы состоит из двух комплементарных друг другу цепей, образующих двойную спираль. В процессе репликации цепи материнской молекулы ДНК расходятся, и на каждой строится новая комплементарная цепь. В результате из одной двойной спирали образуется две, идентичные исходной. Т. е. из одной молекулы ДНК образуются две, идентичные матричной и между собой.

Таким образом, репликация ДНК происходит полуконсервативным способом , когда каждая дочерняя молекула содержит одну материнскую цепь и одну вновь синтезированную.

У эукариот репликация происходит в S-фазе интерфазы клеточного цикла.

Описанный ниже механизм и основные ферменты характерны для подавляющего большинства организмов. Однако бывают исключения, в основном среди бактерий и вирусов.

Расхождение цепей исходной молекулы ДНК обеспечивает фермент геликаза , или хеликаза , который в определенных местах хромосом разрывает водородные связи между азотистыми основаниями ДНК. Хеликазы перемещаются по ДНК с затратой энергии АТФ.

Чтобы цепочки снова не соединились, они удерживаются на расстоянии друг от друга дестабилизирующими белками . Белки выстраиваются в ряд со стороны пентозо-фосфатного остова цепи. В результате образуются зоны репликации, называемые репликационными вилками .

Репликационные вилки образуются не в любых местах ДНК, а только в точках начала репликации , состоящих из определенной последовательности нуклеотидов (около 300 штук). Такие места распознаются специальными белками, после чего образуется так называемый репликационный глаз , в котором расходятся две цепи ДНК.

Из точки начала репликация может идти как в одном, так и в двух направлениях по длине хромосомы. В последнем случае цепи ДНК расходятся вперед и назад, и из одного репликационного глазка образуются две репликационные вилки.

Репликон - единица репликации ДНК, от точки ее начала и до точки ее окончания.

Поскольку в ДНК цепи спирально закручены относительно друг друга, то разделение их хеликазой вызывает появление дополнительных витков перед репликационной вилкой. Чтобы снять напряжение, молекула ДНК должна была бы проворачиваться вокруг своей оси один раз на каждые 10 пар разошедшихся нуклеодидов, именно столько образуют один виток спирали. В таком случае ДНК бы быстро вращалась с затратой энергии. Но этого не происходит, т. к. природа нашла более эффективный способ справится с возникающим при репликации напряжением спирали.

Фермент топоизомераза разрывает одну из цепей ДНК. Отсоединенный участок проворачивается на 360° вокруг второй целой цепи и снова соединяется со своей цепью. Этим снимается напряжение, т. е. устраняются супервитки.



Каждая отдельная цепь ДНК старой молекулы используется в качестве матрицы для синтеза новой комплементарной себе цепи. Добавление нуклеотидов к растущей дочерней цепи обеспечивает фермент ДНК-полимераза . Существует несколько разновидностей полимераз.

В репликационной вилке к освободившимся водородным связям цепей согласно принципу комплиментарности присоединяются свободные нуклеотиды, находящиеся в нуклеоплазме. Присоединяющиеся нуклеотиды представляют собой дезоксирибонуклеозидтрифосфаты (дНТФ), а конкретно дАТФ, дГТФ, дЦТФ, дТТФ.

После образования водородных связей фермент ДНК-полимераза связывает нуклеотид фосфоэфирной связью с последним нуклеотидом синтезируемой дочерней цепи. При этом отделяется пирофосфат, включающий два остатка фосфорной кислоты, который потом расщепляется на отдельные фосфаты. Реакция отщепления пирофосфата в результате гидролиза энергетически выгодна, так как связь между первым, который уходит в цепь, и вторым фосфатными остатками богата энергией. Эта энергия используется полимеразой.

Полимераза не только удлиняет растущую цепь, но и способна отсоединять ошибочные нуклеотиды, т. е. обладает корректирующей способностью. Если последний нуклеотид, который должен быть присоединен к новой цепи, не комплементарен матричному, то полимераза его удалит.

ДНК-полимераза может присоединять нуклеотид только к -OH группе, находящейся при 3-м атоме углерода дезоксирибозы. Таким образом цепь синтезируется только со стороны своего 3´-конца. То есть синтез новой цепи ДНК идет в направлении от 5´- к 3´-концу. Поскольку в двуцепочечной молекуле ДНК цепи антипараллельны, то процесс синтеза по материнской, или матричной, цепи идет в обратном направлении – от 3´- к 5´-концу.

Поскольку цепи ДНК антипараллельны, а синтез новой цепи возможен только в направлении 5´→3´, то в репликационной вилке дочерние цепи будут синтезироваться в разных направлениях.

На матрице 3´→5´ сборка новой полинуклеотидной последовательности происходит по большей части непрерывно, так как эта цепь синтезируется в направлении 5´→3´. Антипараллельная матрица характеризуется 5´→3´ направлением, поэтому синтез дочерней цепи по ходу движения вилки здесь не возможен. Здесь он был бы 3´→5´, но ДНК-полимера не может присоединять к 5´-концу.

Поэтому синтез на матрице 5´→3´ выполняется небольшими участками - фрагментами Оказаки (названы в честь открывшего их ученого). Каждый фрагмент синтезируется в обратном ходу образования вилки направлении, что обеспечивает соблюдение правила сборки от 5´- к 3´-концу.


Другим «недостатком» полимеразы является то, что она не может сама начать синтез участка дочерней цепи. Причина этого кроется в том, что ей необходим -OH-конец нуклеотида, уже соединенного с цепью. Поэтому необходима затравка , или праймер . Им выступает короткая молекула РНК, синтезируемые ферментом РНК-праймазой и спаренная с матричной цепью ДНК. Синтез каждого участка Оказаки начинается со своей РНК-затравки. Та цепь, которая синтезируется непрерывно, обычно имеет один праймер.

После удаления праймеров и застраивания брешей ДНК-полимеразой отдельные участки дочерней цепи ДНК сшиваются между собой ферментом ДНК-лигазой .

Непрерывная сборка идет быстрее, чем фрагментарная. Поэтому одна из дочерних цепей ДНК называется лидирующей , или ведущей, вторая - запаздывающей , или отстающей .

У прокариот репликация протекает быстрее: примерно 1000 нуклеотидов в секунду. В то время как у эукариот только около 100 нуклеотидов. Количество нуклеотидов в каждом фрагменте Оказаки у эукариот составляет примерно до 200, у прокариот - до 2000.

У прокариот кольцевые молекулы ДНК представляют собой один репликон. У эукариот каждая хромосома может содержать множество репликонов. Поэтому синтез начинается в нескольких точках, одновременно или нет.

Ферменты и другие белки репликации действуют совместно, образуя комплекс и двигаясь по ДНК. Всего в процессе участвует около 20 разных белков, здесь были перечислены лишь основные.

Читайте также:
  1. Аналоговые электромеханические приборы для измерений силы тока и напряжения. Электростатические измерительные механизмы
  2. Антидоты: определение. Основные механизмы антидотного действия
  3. В.63. Диагностика банкротства механизмы фин.стабилизации пр-ия.
  4. Важнейшие принципы разделения функции управления инфраструктуры и ресурсов территорий, и механизмы их эффективного функционирования.
  5. Взаимодействие органов местного самоуправления с предприятиями различных форм собственности: цели и механизмы.
  6. Волевая регуляция, ее критерии, функции и психологические механизмы.
  7. Вопрос 4. Вспомогательные механизмы выделения частиц из потока.

Репликация ДНК - это процесс синтеза дочерней молекулы дезоксирибонуклеиновой кислоты, который происходит в процессе деления клетки на матрице родительской молекулы ДНК.

При этом генетический материал, зашифрованный в ДНК, удваивается и делится между дочерними клетками.

Репликацию ДНК осуществляет фермент ДНК-полимераза.

В основе механизма репликация лежит ферментативный синтез дезоксирибонуклеиновой кислоты (ДНК)

Строгая специфичность спаривания азотистых оснований в молекуле ДНК обусловливает комплементарность последовательностей оснований в двух цепях и обеспечивает высокую точность

Согласно Уотсону и Крику, процесс Репликация ДНК предусматривает:

1) разрыв водородных связей и расплетение нитей двойной спирали;

2) синтез на одиночных нитях комплементарных цепей.

В результате из одной двухцепочечной ДНК возникают две подобные молекулы, причём в каждой из дочерних молекул одна полинуклеотидная цепь родительская, а другая - синтезированная заново (полуконсервативный механизм Репликация).

Процесс редупликации :

Раскручивание спирали молекулы - отделение одной цепи от другой на части молекулы ДНК

Воздействие фермента ДНК-полимеразы на молекулу

Присоединение к каждой цепи ДНК комплементарных нуклеотидов

Образование двух молекул ДНК из одной.

Функциональная единица репликации – репликон (начало – инициация, конец – завершение). Однажды начавшись, репликация продолжается до тех пор, пока весь репликон не будет дуплицирован (удвоен).

Рост полинуклеотидной цепи идет только с ее З"-конца, т. е. в направлении 5" : 3". Фермент, катализирующий эту реакцию - ДНК – полимераза .

Репликационная вилка асимметрична . Из двух синтезируемых дочерних цепей ДНК одна строится непрерывно, а другая – с перерывами. Первую называют ведущей, или лидирующей , цепью, а вторую – отстающей.

В качестве затравок для синтеза фрагментов отстающей цепи служат короткие отрезки РНК, комплементарные матричной цепи ДНК. Эти РНК-затравки (праймеры) , состоящие примерно из 10 нуклеотидов, с определенными интервалами синтезируются на матрице отстающей цепи из рибонуклеозидтрифосфатов в направлении 5" : 3" с помощью фермента РНК-праймазы.



РНК-праймеры затем наращиваются дезоксинуклеотидами с 3"-конца ДНК-полимеразой, которая продолжает наращивание до тех пор, пока строящаяся цепь не достигает РНК-затравки, присоединенной к 5"-концу предыдущего фрагмента. Образующиеся таким образом фрагменты (т. наз. фрагменты Оказаки ) отстающей цепи насчитывают у бактерий 1000-2000 дезоксирибонуклеотидных остатков; в животных клетках их длина не превышает 200 нуклеотидов.

Чтобы обеспечить образование непрерывной цепи ДНК из многих таких фрагментов, в действие вступает особая система репарации ДНК, удаляющая РНК-затравку и заменяющая ее на ДНК. Завершает весь процесс фермент ДНК-лигаза , катализирующий образование фосфодиэфирной связи между группой З"-ОН нового фрагмента ДНК и 5"-фосфатной группой предыдущего фрагмента.

Раскручивание двойной спирали и пространств. разделение цепей осуществляется при помощи нескольких специальных белков. Геликазы расплетают короткие участки ДНК, находящиеся непосредственно перед репликационной вилкой.

К каждой из разделившихся цепей присоединяется несколько молекул ДНК-связывающих белков, которые препятствуют образованию комплементарных пар и обратному воссоединению цепей.



В случае кольцевого репликона (напр., у плазмиды) описанный процесс наз. q-репликацией. Кольцевые молекулы ДНК закручены сами на себя (суперспирализованы), при раскручивании двойной спирали в процессе репликации они должны непрерывно вращаться вокруг собственной оси. При этом возникает торсионное напряжение, которое устраняется путем разрыва одной из цепей. Затем оба конца сразу же вновь соединяются друг с другом. Эту функцию выполняет фермент ДНК-топоизомераза .

ДНК – полимераза

ДНК-полимераза - фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

ДНК – геликазы

ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

Публикации по теме