Распространение звуковых волн. Особенности распространения и излучения звука в воде

    Наблюдатель по часам отмечал время, прошедшее между появлением вспышки и моментом, когда был услышан звук. Временем, за которое свет проходил это расстояние, пренебрегали. Для того чтобы в наибольшей степени устранить влияние ветра, с каждой стороны было по пушке и наблюдателю и каждая пушка стреляла примерно в одно и то же время.

    Бралось среднее значение двух замеров времени, и на его основании . Она оказалась примерно равной 340 мс -1 . Большим недостатком этого способа измерения было то, что не всегда пушка оказывалась под рукой!

    Многие экзаменуемые описывают похожий способ. Один ученик стоит на одной стороне футбольного поля состартовым пистолетом, а другой - на другой его стороне с секундомером. Расстояние между ними тщательно измеряется рулеткой. Ученик пускает секундомер, когда видит, как из ствола появляется дымок, и останавливает его, услышав звук. То же самое проделывается, когда они поменяются местами, чтобы компенсировать воздействие ветра. Затем определяется среднее время.

    Поскольку звук распространяется со скоростью 340 мс -1 , то секундомер, скорее всего, не будет достаточно точен. Предпочтительнее оперировать сантисекундами или миллисекундами.

    Измерение скорости звука с помощью эха

    Когда произведен короткий резкий звук, например хлопок, то волновой импульс может быть отражен крупным препятствием, например стеной, и услышан наблюдателем. Этот отраженный импульс называется эхом. Представим, что на расстоянии 50 м от стены стоит человек и производит один хлопок. Когда эхо услышано, звук прошел 100 м. Измерение этого интервала секундомером не будет достаточно точным. Вместе с тем если второй человек держит секундомер, а первый хлопает, то время для большого числа звуков эха может быть получено с достаточной точностью.

    Предположим, что расстояние, на котором хлопающий человек находится перед стеной, составляет 50 м, а временной интервал между первым и сто первым хлопком составляет 30 с, тогда:

    скорость звука = пройденное расстояние / время одного хлопка = 100м: 30 / 100 с = 333 мс -1

    Измерение скорости звука с помощью осциллографа

    Более сложным способом прямого измерения скорости звука является применение осциллографа. Громкоговоритель испускает импульсы через равные интервалы, и они фиксируются катодно-лучевым осциллографом (см. рис.). Когда импульс получен микрофоном, он также будет зарегистрирован осциллографом. Если известны временные характеристики осциллографа, то может быть найден временной интервал между двумя импульсами.

    Замеряется расстояние между громкоговорителем и микрофоном. Скорость звука может быть найдена по формуле скорость = расстояние / время.

    Скорость звука в различных средах

    Скорость звука выше в твердых телах, чем в жидкостях, и выше в жидкостях, чем в газах. Проведенные в прошлом эксперименты на Женевском озере показали, что скорость звука в воде значительно выше, чем в воздухе. В пресной воде скорость звука составляет 1410 мс -1 , в морской воде - 1540 мс -1 . В железе скорость звука составляет примерно 5000 мс -1 .

    Посылая звуковые сигналы и отмечая временной интервал до прихода отраженного сигнала (эха), можно определить глубину моря и местонахождение косяков рыбы. Во время войны эхолоты высокочастотного звука применялись для обнаружения мин. Летучие мыши в полете используют особую форму эхосигнала для обнаружения препятствий. Летучая мышь испускает высокочастотный звук, который отражается от объекта на ее пути. Мышь слышит эхо, определяет местонахождение объекта и уклоняется от него.

    Скорость звука в воздухе зависит от атмосферных условий. Скорость звука пропорциональна квадратному корню из частного от деления давления на плотность. Изменения давлении не влияют на скорость звука в воздухе. Это связано с тем, что увеличение давления влечет за собой соответствующее увеличение плотности и отношение давления к плотности остается постоянным.

    На скорость звука в воздухе (как и в любом газе) влияют изменения температуры. Законы для газов указывают, что отношение давления к плотности пропорционально . Таким образом, скорость звука пропорциональна √T. Звуковой барьер легче преодолевать на больших высотах, потому что там ниже температура.

    На скорость звука влияют изменения влажности. Плотность водяного пара меньше плотности сухого воздуха при одинаковом давлении. Ночью, когда влажность повышается, звук распространяется быстрее. Звуки слышны более ясно тихой туманной ночью.

    Это происходит частично вследствие повышенной влажности, а частично из-за того, что в этих условиях обычно имеет место температурная инверсия, при которой звуки преломляются таким образом, что они не рассеиваются.

В статье рассмотрены характеристика звуковых явлений в атмосфере: скорость распространения звука в воздухе, влияние на распространение звука ветра, тумана.
Продольные колебания частиц материи, распространяясь по материальной среде (по воздуху, воде и твердым телам) и достигнув уха человека, вызывают ощущения, называемые звуком.
В атмосферном воздухе всегда находятся звуковые волны различной частоты и силы. Часть этих волн создается искусственно человеком, а часть звуков имеет метеорологическое происхождение.
К звукам метеорологического происхождения относятся гром, завывание ветра, гудение проводов, шум и шелест деревьев, «голос» моря, звуки при падении на земную поверхность твердых и жидких осадков, звуки прибоя у берегов морей и озер и другие.
На скорость распространения звука в атмосфере влияет температура и влажность воздуха, а также ветер (направление и его сила). В среднем скорость звука в атмосфере равна 333 м/с. С увеличением температуры воздуха скорость звука несколько возрастает. Изменение абсолютной влажности воздуха оказывает меньшее влияние на скорость звука.
Скорость звука в воздухе определяется формулой Лапласа:

(1),
где р - давление; ? - плотность воздуха; c? - теплоемкость воздуха при постоянном давлении; cp - теплоемкость воздуха при постоянном объеме.
Используя уравнение состояния газа, можно получить ряд зависимостей скорости звука от метеорологических параметров.
Скорость звука в сухом воздухе определяется по формуле:
с0 = 20,1 ?Т м/с, (2)
а во влажном воздухе:
с0 = 20,1 ?ТВ м/с, (3)
где ТВ = так называемая акустическая виртуальная температура, которая определяется по формуле ТВ = Т (1+ 0,275 е/р).
При изменении температуры воздуха на 1° скорость звука изменяется на 0,61 м/с. Скорость звука зависит от величины отношения е/р (отношение влажности к давлению), но эта зависимость мала, и, например, при упругости водяного пара менее 7мм пренебрежение ею дает ошибку в скорости звука, не превышающую 0,5 м/сек.
При нормальном давлении и Т = 0 °С скорость звука в сухом воздухе равна 333 м/сек. Во влажном воздухе скорость звука может быть определена по формуле:
с = 333 + 0,6t + 0,07е (4)
В диапазоне температур (t) от -20° до +30° эта формула дает ошибку в скорости звука не более ± 0,5 м/сек. Из приведенных формул видно, что скорость звука повышается с повышением температуры и влажности воздуха.
Ветер оказывает сильное влияние: скорость звука по направлению движения ветра увеличивается, против ветра — уменьшается. Наличие ветра в атмосфере вызывает дрейф звуковой волны, что создает впечатление смещения источника звука. Скорость звука в этом случае (c1) определится выражением:
c1 = c + U cos ?, (1)
где U-скорость ветра; ? — угол между направлением ветра в точке наблюдения и наблюдаемым направлением прихода звука.
Знание величины скорости распространения звука в атмосфере имеет большое значение при решении ряда задач по изучению верхних слоев атмосферы акустическим методом. Пользуясь средней скоростью звука в атмосфере, можно узнать расстояние от своего местонахождения до места возникновения грома. Для этого нужно определить число секунд между видимой вспышкой молнии и моментом прихода звука грома. Затем надо умножить среднее значение скорости звука в атмосфере — 333 м/сек. на полученное число секунд.

С какой скоростью движется звук?

Скорость звука зависит от того, в какой среде он распространяется. Так, в воздухе звук движется со скоростью 344 м/c. Однако если температура, давление, влажность воздуха варьируют, то и скорость звука изменяется. Через жидкую среду, например воду, звук проходит со скоростью примерно 1500 м/c. Ещё быстрее звук движется сквозь твёрдые вещества: 2500 м/с – через твёрдые пластмассы, 5000 м/с – через сталь и примерно 6000 м/с – через некоторые виды стекла.

Может ли звук отражаться от предметов так же, как свет?

Звуковые волны отражаются от твёрдых, гладких и плоских поверхностей (стены, двери), как световые волны от зеркала. Если между возвращением отзвука (или отражения) и посылом оригинального звука проходит более 0,1 с, то мы слышим их как два раздельных звука, отражённый звук называется эхом. Если разница во времени между приходом отражённого эха и посылом звука меньше, то они смешиваются. Что увеличивает общую длительность звучания. Данное явление известно как реверберация.

Специальные звукопоглощающие комнаты изнутри полностью покрыты мягкими материалами определённой фактуры. Стены, потолки и пол улавливают почти всю звуковую энергию, и отражения звука не происходит ни в виде эха, ни в виде реверберации. Такие помещения называют глухими комнатами: все звуки в них приглушены.

Охотящиеся киты, например белухи, издают акустические щелчки, похожие на те, что рассылает летучая мышь. Эти импульсы отражаются как эхо, сообщая киту о расположенных рядом объектах.

Измерим звук

Скорость в соответствии с числом Маха

Некоторые самолёты могут летать со скоростью выше скорости звука, по шкале Маха она соответствует числу М=1. Вокруг летящего сверхзвукового самолёта образуется волна сжатия, которая распространяется в виде громкого глубокого глухого удара, известного как звуковой (когда самолёт преодолевает звуковой барьер). Удар мог бы выдать присутствие самолёта-невидимки «Стелс», бомбардировщика Б-2, поэтому такие самолёты обычно летают со скоростью чуть меньше числа М=1.

Крейсерская скорость Б-2 – примерно 700 км/ч.

Число Маха

Скорость звука можно описать по шкале Маха. Единицу измерения представляют в виде сравнительного числа отношения скорости самолёта к скорости звука в определённых условиях. Число Маха названо так по имени австрийского учёного Эрнста Маха (1838-1916).

Скорость звука в воздухе при температуре 20 градусов и стандартном давлении воздуха на уровне моря соответствует примерно 1238 км/ч. Поэтому предмет, двигающийся так же быстро, имеет скорость М=1 в числах Маха.

Очень высоко над землёй, где температура и давление воздуха ниже обычных, скорость звука составляет 1062 км/ч. Поэтому число Маха 1,5 там соответствует 1593 км/ч.

10 дБ – самые тихие звуки, которые может уловить наш слух, например тиканье часов

20 дБ – шёпот

40 дБ – спокойная беседа окружающих людей

50 дБ – телевидение или радио в среднем звуковом диапазоне

60 дБ – достаточно громкая беседа

70 дБ – домашние приборы: пылесос или домашний комбайн

80 дБ – поезд, проезжающий мимо станции

100 дБ – очень шумный станок или отбойный молоток для дорожных работ

120 дБ – взлетающий реактивный самолёт

По шкале децибелов каждый разрыв в 10 дБ означает 10-кратное увеличение энергии. Например, 60 дБ – звук, в десять раз более сильный, чем 50 дБ.

Первые попытки понять природу возникновения звука были сделаны более двух тысяч лет назад. В трудах древнегреческих ученых Птолемея и Аристотеля делаются верные предположения о том, что звук порождается колебаниями тела. Более того, Аристотель утверждал, что скорость звука является измеримой и конечной величиной. Конечно, в Древней Греции не было технических возможностей для сколько-нибудь точных измерений, поэтому скорость звука была относительно точно измерена лишь в семнадцатом веке. Для этого использовался метод сравнения между временем обнаружения вспышки от выстрела и временем, через которое до наблюдателя долетал звук. В результате многочисленных экспериментов ученые пришли к выводу, что звук распространяется в воздухе со скоростью от 350 до 400 метров в секунду.

Исследователи также выяснили, что значение скорости распространения звуковых волн в той или иной среде напрямую зависит от плотности и температуры этой среды. Так, чем разреженнее воздух, тем медленнее по нему перемещается звук. Кроме того, скорость звука тем выше, чем выше температура среды. На сегодняшний день принято считать, что скорость распространения звуковых волн в воздухе при нормальных условиях (на уровне моря при температуре 0ºС) равняется 331 метру в секунду.

Число Маха

В реальной жизни скорость звука является значимым параметром в авиации, однако на тех высотах, где обычно , характеристики окружающей среды сильно отличаются от нормальных. Именно поэтому в авиации используется универсальное понятие, которое называется число Маха, названное в честь австрийского Эрнста Маха. Это число представляет собой скорость объекта, поделенную на местную скорость звука. Очевидно, что чем меньше скорость звука в среде с конкретными параметрами, тем больше будет число Маха, даже если скорость самого объекта не изменится.

Практическое применение этого числа связано с тем, что движение на скорости, которая выше скорости звука, существенно отличается от перемещения на дозвуковых скоростях. В основном, это связано с изменением аэродинамики самолета, ухудшением его управляемости, нагревом корпуса, а также с сопротивлением волн. Данные эффекты наблюдаются лишь тогда, когда число Маха превышает единицу, то есть, объект преодолевает звуковой барьер. На данный момент существуют формулы, которые позволяют вычислить скорость звука при тех или иных параметрах воздуха, а, следовательно, рассчитать число Маха для разных условий.

Видео по теме

Источники:

  • Частота колебаний камертона 440 Гц

Звучать могут различные физические объекты, находящиеся в твердом, жидком или газообразном состоянии. Например, вибрирующая струна или выдуваемая из дудочки струя воздуха.

Звук - это волновые колебания среды, воспринимаемые человеческим ухом. Источниками являются различные физические тела. Вибрация источника возбуждает колебания в окружающей среде, которые распространяются в пространстве. Звуковые волны занимают частотный диапазон от 20 Гц до 20кГц, между инфразвуком и ультразвуком.

Механические колебания возникают только там, где есть упругая , поэтому в вакууме звук распространяться не может. Скорость звука - это скорость прохождения звуковой волны по , окружающей источник звука.

Сквозь газообразную среду, жидкости и в твердые тела звук проходит с разной скоростью. В воде звук распространяется быстрее, чем в воздухе. В твердых телах скорость звука выше, чем в . Для каждого вещества скорость распространения звука постоянна. Т.е. скорость звука зависит от плотности и упругости среды, а не от частоты звуковой волны и ее амплитуды.

Звуковая может огибать встреченное препятствие. Это называется дифракцией. У низких звуков дифракция лучше, чем у высоких. Здесь

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle C_{p}} - изобарная теплоемкость; C v {\displaystyle C_{v}} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

Публикации по теме