Процесс воспламенения под действием огня. Процесс возгорания и воспламенения. Вопросы для самоконтроля

Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов, которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.*

В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха. Этот вид окислителя и принят в дальнейшем изложении. Горение возможно при наличии вещества, способного гореть, кислорода (воздуха) и источника зажигания. При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях, а источник зажигания имел необходимый запас тепловой энергии.

Известно, что в воздухе содержится около 21% кислорода. Горение большинства веществ становится невозможным, когда содержание кислорода в воздухе понижается до 14-18%, и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается.*

Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник зажигания вызывает в ней реакцию горения. Источником зажигания может быть горящее пли накаленное тело, а также электрический разряд, обладающий запасом энергии, достаточным для возникновения горения и др.

Горючие системы подразделяются на однородные и неоднородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют горением кинетическим. Скорость его определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации. Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным горением, так как его скорость определяется главным образом сравнительно медленно протекающим процессом-диффузией.

Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения. По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси, наоборот, имеют в избытке горючий компонент и в недостатке окислитель.*

Возникновение горения связано с обязательным самоускорением реакции в системе. Процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Самоускорение химической реакции при горении подразделяется на три основных вида: тепловой, цепной и комбинированный - цепочечно-тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.

Сгорание различают полное и неполное. При полном сгорании образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды. Неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.

Ориентировочно количество воздуха (м3), необходимое для сгорания 1 кг вещества (или 1 м3 газа):

где Q - теплота сгорания, кДж/кг, или кДж/м3.

Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг; древесины воздушно-сухой -14 600 кДж/кг; ацетилена - 54400 кДж/м3; метана - 39400 кДж/м3; окиси углерода - 12600 кДж/м3.*

По теплоте сгорания горючего вещества можно определить, какое количество тепла выделяется при его сгорании, температуру горения, давление при взрыве в замкнутом объеме и другие данные.

Температура горения вещества определяется как теоретическая, так и действительная. Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло, выделяющееся при горении, идет на их нагревание.

Теоретическая температура горения:

де m - количество продуктов горения, образующихся при сгорании 1 кг вещества; с - теплоемкость продуктов горения, кДж/ (кг*К); и - температура воздуха, К; Q - теплота сгорания, кДж/кг.

Действительная температура горения на 30-50% ниже теоретической, так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.

Высокая температура горения способствует распространению пожара, при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется.

При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.

Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Возгораемость - способность возгораться (воспламеняться) под воздействием источника зажигания.*

Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

Горение при этом возникает без внесения источника зажигания - за счет теплового или микробиологического самовозгорания.

Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду. Микробиологическое самовозгорание возникает в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси). Температура самовоспламенения является важной характеристикой горючего вещества. Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл.2.1.

Таблица 2.1. Температуры самовоспламенения некоторых жидкостей

Помимо температуры самовоспламенения, горючие вещества характеризуются периодом индукции или временем запаздывания самовоспламенения. Периодом индукции называют промежуток времени, в течение которого происходит саморазогревание до воспламенения. Период индукции для одного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температуры и давления.

Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом, если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.

Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения. Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов. Некоторые вещества могут самовозгораться, находясь при обычной температуре. Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф, ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности. Этим обусловлена возможность самовозгорания промасленной ветоши. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла кислородом воздуха сопровождается выделением тепла. В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара. Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.

На машиностроительных предприятиях применяются многие вещества, способные к самовозгоранию. Самовозгораться при взаимодействии с воздухом могут сульфиды железа, сажа, алюминиевая и цинковая пудра и др. Самовозгораться при взаимодействии с водой могут щелочные металлы, карбиды металлов и др. Карбид кальция (СаС2), реагируя с водой, образует ацетилен (С2Н2).

Под действием источника зажигания, при настоящем стандартном испытании характеризуется устойчивым пламенным горением.

Также ознакомьтесь с познавательным материалом:

Воспламенение отличается от:

  • вспышки – устойчивостью горения, продолжающимся после прекращения действия источника зажигания;
  • самовоспламенения – обязательным наличием источника зажигания, воздействующим на ограниченный объем или поверхность горючего вещества и материала без повышения температуры всей его массы.

Воспламенение становится возможным, если компоненты системы горючее вещество – окислитель – источник зажигания будут удовлетворять следующим условиям:

  • горючие газы и (или) пары, выделяющиеся с поверхности жидких (твердых) веществ, образуются в количествах, соответствующих области между нижним и верхним концентрационным пределом распространения пламени;
  • содержание окислителя в смеси – не менее минимального взрывоопасного содержания кислорода (МВСК);
  • энергия источника зажигания – не ниже для данной смеси газа (пара) с окислителем.

При отсутствии (невыполнении) хотя бы одного из перечисленных условий воспламенение не произойдет.

Явление воспламенения связано с очень быстрым переходом от медленной и незаметной реакции окисления к почти мгновенному и резкому химическому взаимодействию между горючим веществом и окислителем. В момент воспламенения создаются такие условия, при которых возможно прогрессивное ускорение химических реакций. Для создания необходимой концентрации паров горючего вещества требуется, чтобы оно было нагрето до , являющейся показателем взрывопожароопасности этого вещества.

Воспламенение иногда называют вынужденным зажиганием или просто зажиганием с учетом того, что основная масса горючей среды остается холодной, а нагревание осуществляется только в одном небольшом по объему участке среды. Источниками зажигания могут быть: накаленное тело, температура которого, как правило, превышает температуру воспламенения примерно на 200 °С; небольшое пламя, электрическая искра и т.д. При воздействии источника зажигания воспламенение возникает с задержкой, что связано с некоторым временем развития реакций и накопления тепла, называемым индукционным периодом воспламенения. Опасность воспламенения заключается в последующем неизбежном распространении пламени с характерной для данного вещества нормальной скоростью на всю массу (объем), которая в дальнейшем может уменьшиться или увеличиться под воздействием внешних факторов. Знание условий воспламенения, его развития и последствий позволяет предусматривать соответствующие технические решения, направленные на повышение температуры воспламенения, снижение скорости распространения пламени, предотвращение перехода горения во взрыв (детонацию) и в итоге к повышению пожаровзрывобезопасности объектов.

Правильная организация противопожарных мероприятий и тушения пожаров невозможна без понимания сущности химических и физических процессов, которые происходят при горении. Знание этих процессов дает возможность успешно бороться с огнем.

Горение - это химическая реакция окисления, сопровождающаяся выделением большого количества тепла и обычно свечением. Окислителем в процессе горения может быть кислород, а также хлор, бром и другие вещества.

В большинстве случаев при пожаре окисление горючих веществ происходит кислородом воздуха. Этот вид окислителя и принят в дальнейшем изложении. Горение возможно при наличии вещества, способного гореть, кислорода (воздуха) и источника зажигания. При этом необходимо, чтобы горючее вещество и кислород находились в определенных количественных соотношениях, а источник зажигания имел необходимый запас тепловой энергии.

Известно, что в воздухе содержится около 21% кислорода. Горение большинства веществ становится невозможным, когда содержание кислорода в воздухе понижается до 14-18%, и только некоторые горючие вещества (водород, этилен, ацетилен и др.) могут гореть при содержании кислорода в воздухе до 10% и менее. При дальнейшем уменьшении содержания кислорода горение большинства веществ прекращается.

Горючее вещество и кислород являются реагирующими веществами и составляют горючую систему, а источник зажигания вызывает в ней реакцию горения. Источником зажигания может быть горящее пли накаленное тело, а также электрический разряд, обладающий запасом энергии, достаточным для возникновения горения и др.

Горючие системы подразделяются на однородные и неоднородные. Однородными являются системы, в которых горючее вещество и воздух равномерно перемешаны друг с другом (смеси горючих газов, паров с воздухом). Горение таких систем называют горением кинетическим. Скорость его определяется скоростью химической реакции, значительной при высокой температуре. При определенных условиях такое горение может носить характер взрыва или детонации. Неоднородными являются системы, в которых горючее вещество и воздух не перемешаны друг с другом и имеют поверхности раздела (твердые горючие материалы и нераспыленные жидкости). В процессе горения неоднородных горючих систем кислород воздуха проникает (диффундирует) сквозь продукты горения к горючему веществу и вступает с ним в реакцию. Такое горение называют диффузионным горением, так как его скорость определяется главным образом сравнительно медленно протекающим процессом-диффузией.

Для возгорания тепло источника зажигания должно быть достаточным для превращения горючих веществ в пары и газы и для нагрева их до температуры самовоспламенения. По соотношению горючего и окислителя различают процессы горения бедных и богатых горючих смесей. Бедные смеси содержат в избытке окислитель и имеют недостаток горючего компонента. Богатые смеси, наоборот, имеют в избытке горючий компонент и в недостатке окислитель.

Возникновение горения связано с обязательным самоускорением реакции в системе. Процесс самоускорения реакции окисления с переходом ее в горение называется самовоспламенением. Самоускорение химической реакции при горении подразделяется на три основных вида: тепловой, цепной и комбинированный - цепочечно-тепловой. По тепловой теории процесс самовоспламенения объясняется активизацией процесса окисления с возрастанием скорости химической реакции. По цепной теории процесс самовоспламенения объясняется разветвлением цепей химической реакции. Практически процессы горения осуществляются преимущественно по комбинированному цепочечно-тепловому механизму.

Сгорание различают полное и неполное. При полном сгорании образуются продукты, которые неспособны больше гореть: углекислый газ, сернистый газ, пары воды. Неполное сгорание происходит, когда к зоне горения затруднен доступ кислорода воздуха, в результате чего образуются продукты неполного сгорания: окись углерода, спирты, альдегиды и др.

Ориентировочно количество воздуха (м 3), необходимое для сгорания 1 кг вещества (или 1 м 3 газа),

где Q - теплота сгорания, кДж/кг, или кДж/м 3 .

Теплота сгорания некоторых веществ: бензина-47 000 кДж/кг; древесины воздушно-сухой -14 600 кДж/кг; ацетилена - 54400 кДж/м 3 ; метана - 39400 кДж/м 3 ; окиси углерода - 12600 кДж/м 3 .

По теплоте сгорания горючего вещества можно определить, какое количество тепла выделяется при его сгорании, температуру горения, давление при взрыве в замкнутом объеме и другие данные.

Температура горения вещества определяется как теоретическая, так и действительная. Теоретической называется температура горения, до которой нагреваются продукты сгорания, в предположении, что все тепло, выделяющееся при горении, идет на их нагревание.

Теоретическая температура горения

где m - количество продуктов горения, образующихся при сгорании 1 кг вещества; с - теплоемкость продуктов горения, кДж/ (кг*К); θ - температура воздуха, К; Q - теплота сгорания, кДж/кг.

Действительная температура горения на 30-50% ниже теоретической, так как значительная часть тепла, выделяющегося при горении, рассеивается в окружающую среду.

Высокая температура горения способствует распространению пожара, при ней большое количество тепла излучается в окружающую среду, и идет интенсивная подготовка горючих веществ к горению. Тушение пожара при высокой температуре горения затрудняется.

При рассмотрении процессов горения следует различать следующие его виды: вспышка, возгорание, воспламенение, самовоспламенение, самовозгорание, взрыв.

Вспышка - это быстрое сгорание горючей смеси, не сопровождающееся образованием сжатых газов.

Возгорание - возникновение горения под воздействием источника зажигания.

Воспламенение - возгорание, сопровождающееся появлением пламени.

Возгораемость - способность возгораться (воспламеняться) под воздействием источника зажигания.

Самовозгорание - это явление резкого увеличения скорости экзотермических реакций, приводящее к возникновению горения веществ (материала, смеси) при отсутствии источника зажигания.

Самовоспламенение - это самовозгорание, сопровождающееся появлением пламени.

Взрывом называется чрезвычайно быстрое химическое (взрывчатое) превращение вещества, сопровождающееся выделением энергии и образованием сжатых газов, способных производить механическую работу.

Необходимо понимать различие между процессами возгорания (воспламенения) и самовозгорания (самовоспламенения). Для того чтобы возникло воспламенение, необходимо внести в горючую систему тепловой импульс, имеющий температуру, превышающую температуру самовоспламенения вещества. Возникновение же горения при температурах ниже температуры самовоспламенения относят к процессу самовозгорания (самовоспламенения).

Горение при этом возникает без внесения источника зажигания - за счет теплового или микробиологического самовозгорания.

Тепловое самовозгорание вещества возникает в результате самонагревания под воздействием скрытого или внешнего источника нагрева. Самовоспламенение возможно только в том случае, если количество тепла, выделяемого в процессе самоокисления, будет превышать отдачу тепла в окружающую среду.

Микробиологическое самовозгорание возникает в результате самонагревания под воздействием жизнедеятельности микроорганизмов в массе вещества (материала, смеси). Температура самовоспламенения является важной характеристикой горючего вещества.

Температура самовоспламенения - это самая низкая температура вещества, при которой происходит резкое увеличение скорости экзотермических реакций, заканчивающееся возникновением пламенного горения.

Температуры самовоспламенения некоторых жидкостей, газов и твердых веществ, имеющих применение в машиностроительной промышленности, приведены в табл. 28.

Таблица 28 Температуры самовоспламенения некоторых жидкостей

Вещество Температура самовоспламенения, °С

Фосфор белый

20

Сероуглерод

112

Целлулоид

140-180

Сероводород

246

Масла нефтяные

250-400
250

Бензин А-76

255
380-420

Каменный уголь

400

Ацетилен

406

Этиловый спирт

421

Древесный уголь

450

Нитробензол

482
530
612
625

Окись углерода

644
700

Помимо температуры самовоспламенения, горючие вещества характеризуются периодом индукции или временем запаздывания самовоспламенения. Периодом индукции называют промежуток времени,

в течение которого происходит саморазогревание до воспламенения. Период индукции для одного и того же горючего вещества неодинаков и находится в зависимости от состава смеси, начальных температуры и давления.

Период индукции имеет практическое значение при действии на горючее вещество маломощных источников воспламенения (искры). Искра, попадая в горючую смесь паров или газов с воздухом, нагревает некоторый объем смеси, и в то же время происходит охлаждение искры. Воспламенение смеси зависит от соотношения периода индукции смеси и времени охлаждения искры. При этом, если период индукции больше времени охлаждения искры, то воспламенения смеси не произойдет.

Период индукции принят в основу классификации газовых смесей по степени их опасности в отношении воспламенения. Период индукции пылевых смесей зависит от размера пылинок, количества летучих веществ, влажности и других факторов.

Некоторые вещества могут самовозгораться, находясь при обычной температуре. Это в основном твердые пористые вещества большей частью органического происхождения (опилки, торф, ископаемый уголь и др.). Склонны к самовозгоранию и масла, распределенные тонким слоем по большой поверхности. Этим обусловлена возможность самовозгорания промасленной ветоши. Причиной самовозгорания промасленных волокнистых материалов является распределение жировых веществ тонким слоем на их поверхности и поглощение кислорода из воздуха. Окисление масла кислородом воздуха сопровождается выделением тепла. В случае, когда количество образующегося тепла превышает теплопотери в окружающую среду, возможно возникновение пожара.

Пожарная опасность веществ, склонных к самовозгоранию, очень велика, поскольку они могут загораться без всякого подвода тепла при температуре окружающей среды ниже температуры самовоспламенения веществ, а период индукции самовозгорающихся веществ может составлять несколько часов, дней и даже месяцев. Начавшийся процесс ускорения окисления (разогревания вещества) можно остановить лишь при обнаружении опасного нарастания температуры, что указывает на большое значение пожарно-профилактических мероприятий.

На машиностроительных предприятиях применяются многие вещества, способные к самовозгоранию. Самовозгораться при взаимодействии с воздухом могут сульфиды железа, сажа, алюминиевая и цинковая пудра и др. Самовозгораться при взаимодействии с водой могут щелочные металлы, карбиды металлов и др. Карбид кальция (СаС 2), реагируя с водой, образует ацетилен (С 2 Н 2).

Процесс воспламенения

из "Горение и свойства горючих веществ"

Воспламенением называется процесс возникновения горения, происходящий в результате нагрева части горючего вещества источником воспламенения. При этод температура всей остальной массы горючего вещества остается первоначальной. Воспламенение иначе называют вынужденным воспламенением, возгоранием, зажиганием.
Причиной воспламенения может быть не только теплота, излучаемая нагретым, раскаленным или горящим телом, но и эквивалентное по мощности выделения теплоты в результате механической работы, химической реакции, при электрическом процессе и др. Однако воспламенение при соприкосновении с нагретым телом наиболее распространенный случай воспламенения.
Физическая сущность процесса воспламенения та же, что и самовоспламенения, так как условия самоускоре-ния реакции окисления у них одни и те же. Основное различие между ними заключается в том, что процесс воспламенения пространственно ограничен частью объема горючего вещества, в то время как процесс самовоспламенения происходит во всем его объеме. В связи с этим при воспламенении удельная поверхность теплоотвода горючего вещества обычно выше, чем при самовоспламенении, и ускорение реакции окисления начинается при более высокой температуре по сравнению с температурой самовоспламенения.
В соответствии с тепловой теорией самовоспламенения, дальнейшее уменьшение диаметра накаленных шариков должно привести к тому, что при некотором очень малом диаметре они не смогут воспламенить газовую смесь.
температура зажигания становится равной температуре самовоспламенения.
Повышая температуру тела, можно найти такую температуру Гг, при которой температура смеси около тела понижаться не будет, и кривая температур примет вид Г2Л2. Если еще повысить температуру, то температура горючей смеси вследствие большой скорости выделения тепла не сможет быть постоянной и начнет быстро возрастать (по мере удаления от тела) до тех пор, пока не произойдет воспламенение (кривая Т А на рис. 17, в). Таким образом, температура Гг является для этих условий предельной температурой, т. е. температурой зажигания, и по своей природе аналогична температуре самовоспламенения.
Механизм воспламенения от искр, образующихся при ударе металла о металл, металла о камень и т. д., ничем не отличается от рассмотренного.
Опытами установлено, что при трении стали о сталь образуются искры, способные воспламенить смеси воздуха с водородом, сероуглеродом, ацетиленом, сероводородом, коксовым газом и некоторыми другими веществами. Трение алюминиевых сплавов по стальным, покрытым ржавчиной поверхностям вызывает воспламенение всех известных взрывоопасных газовых смесей.
Из твердых горючих веществ наиболее подвержены воспламенению от искр волокнистые и мелкораздробленные материалы хлопок, войлок, ткань, сено, мякина, шерсть и др. Все они имеют малую теплопроводность и большую поверхность, что способствует сохранению тепловой энергии искры в небольшом объеме горючего вещества и быстрому нагреву его.
представляющее собой нагретые газы, является мощным тепловым источником воспламенения не только газообразных веществ, но и твердых.

Лекция 2 Горение топлива

2.1 Сущность горения

2.2 Воспламенение

2.4 Теплота сгорания топлива.

2.5 Энтальпия топлива и продуктов сгорания.

2.6 Преобразование тепловой энергии продуктов сгорания в механическую работу

2.8 ПОТРЕБНОЕ КОЛИЧЕСТВО ОКИСЛИТЕЛЯ

2.9 Стехиометрический коэффициент элементов

2.10 Стехиометрический коэффициент сложных горючих

2.11 Коэффициент избытка окислителя

2.1 Сущность горения

Горение представляет собой физико-химический процесс, при котором превращение реагирующих веществ сопровождается изменением их химического, а в ряде случаев и агрегатного строения и частичным переходом химической энергии межатомных или межмолекулярных связей в тепловую форму. Для протекания такой реакции необходимо наличие двух групп веществ: горючего и окислителя. По химической сути горение представляет окислительную реакцию, при которой внешние электроны атомов элемента-горючего переходят к атомам элемента-окислителя. Сущность окисления заключается в переходе валентных (внешних) электронов от атомов горючего элемента к атомам элемента-окислителя. Приобретая в результате этого положительный заряд, атомы горючего притягиваются к отрицательно заряженным атомам элемента-окислителя. Реакция данного типа способна протекать с прогрессирующим самоускорением обусловленным накоплением выделяющегося тепла или в следствии образования активных промежуточных продуктов. Она будет протекать вплоть до образования устойчивых при данных условиях химических соединений таких как, например, вода или углекислый газ. Непрерывное протекание реакции горения требует интенсивного тепломассобмена реагирующих веществ. Такие условия имеются только в газовой среде, их нет в жидких и твердых телах. Т.е. жидкое и твердое топливо сначала должно газифицироваться посредством испарения. сублимации или разложения и лишь после этого возможно горение.

2.2 Воспламенение

Воспламенение является начальной стадией горения, в течение которой энергия, подводимая к системе от внешнего источника, приводит к резкому ускорению химической реакции из-за прогрессивного накопления тепла (тепловое воспламенение.) или активных промежуточных веществ (цепное воспламенение). Возможны два предельных режима теплового воспламенения: самовоспламенение и зажигание.

Самовоспламенение обычно приводит к объемному горению, которое начинается в центре объема и распространяется к периферии. Характеризуется быстрым химическим превращением веществ и соответствующим тепловыделением.



Зажигание. Происходит в результате нагревания вещества от высокотемпературного источника тепла - накаленного тела, пламени, электрической. искры и др. При достаточной мощности источника воспламенения подводимое тепло не успевает равномерно распределиться по всему объему, что приводит к разогреву близлежащего слоя вещества до температуры начала реакции. Начало реакции сопровождается дальнейшим ростом температуры и выделением тепла, что в свою очередь инициирует разогрев и воспламенение все более удаленных слоев с образованием волны горения... При этом реакция горения может развиваться как по тепловому, так и по цепному механизму.

2.3 Виды горения и механизм распространения пламени.

Горение, как физико-химическое превращение вещества, происходит в ограниченном пространстве (фронте пламени) с определенной скоростью (рис. 2.1).

Рис. 2.1. Схема фронта пламени при ламинарном горении однородных смесей.

1 - изменение температуры;

2 - изменение концентрации исходных продуктов;

Твс - температура воспламенения;

Тгор - температура горения;

δхр - ширина зоны химической реакции;

δт - ширина зоны топлива;

δп, - ширина зоны пламени; U n - нормальная скорость распространения пламени.

Различают диффузионное и кинетическое горение.

Диффузионное горение имеет место тогда, когда скорость подачи реагирующих веществ в зону горения значительно ниже скорости химического превращения топлива. В этом случае скорость процесса определяется преимущественно гидродинамическими факторами и зависит от свойств топлива.

Кинетическое горение имеет место, когда скорость процесса горения в основном зависит от химических свойств топлива в зоне горения, а гидродинамические факторы подготовки топлива играют меньшую роль.

По механизму распространения зоны реакции различают:

нормальное распространение пламени (тихое);

цепное, путем умножения очагов само воспламенения:;

детонационное горение (взрывное).

Нормальное распространение фронта пламени является основным и практике применения топлив в ДВС. Скорость нормального распространения пламени составляет 0,4-0,5 м/с . Механизм нормального распространения пламени обусловлен передачей теплоты и активных промежуточных продуктов реакции из зоны горения в свежую горючую смесь.

Цепной механизм распространения пламени осуществляется в результате диффузии активных продуктов из зоны реакции в свежую смесь. Распространение зоны горения путем умножения очагов самовоспламенения можно представить как самовоспламенение частично прореагировавшей горючей смеси нагретыми продуктами сгорания в процессе турбулентного перемешивания.

Рис. 2.2. Схема фронта пламени при турбулентном горении однородных смесей, а) малая интенсивность турбулентности;

б) большая интенсивность турбулентности.

Турбулентность значительно увеличивает скорость горения, особенно в диффузионной области развития процесса.. Степень и интенсивность турбулентности улучшают качество распыливания, повышают скорость испарения топлива и смешения его паров с воздухом. Скорость горения может достигать значений 10-50 м/с.

Детонационное распространение пламени происходит при воспламенении горючей смеси вследствие сжатия ее в ударной волне. Ударная волна проходя по горючей смеси, вызывает ее нагрев. Степень нагрева ее зависит от скорости ударной волны, температуры и давления. Если степень сжатия достаточна для воспламенения смеси, то возникает детонационная волна Детонационная волна представляет собой совместное распространение механической ударной волны с фронтом пламени. Скорость распространения детонационных волн определяется скоростью звука в данной среде и составляет от 1200 до 3500 м/с.

Публикации по теме