Графит: плотность, свойства, особенности применения и виды. Физические свойства и фото графита

Графит (от др.-греч. γράφω - пишу) — минерал, неметалл из класса самородных элементов. Гексагональная модификация углерода. Формула: С. Первоначально английские пастухи, открывшие минерал в XVI веке, приняли графит за свинец.

Графит в музее минералогии, Бонн.

Блеск металловидный, жирный или графит матовый. Твердость 1-2. Удельный вес 2,09-2,23 г/см 3 . Пишет на бумаге, пачкает руки. Жирен на ощупь. Цвет железно-черный, стально-серый. Черта черная. Спайность весьма совершенная. Сплошные чешуйчатые, плотные или землистые массы, вкрапления и кристаллы в виде шестиугольных пластинок. Сингония гексагональная. Кристаллы встречаются редко. Кристаллическая структура графита обусловливает его отличия от алмаза - другой аллотропной формы углерода, в котором атомы прочно связаны друг с другом по всем направлениям. Кристаллическая структура графита определяет и его малую твердость, легкость растирания, ощущение жирности, весьма совершенную спайность, непрозрачность, металловидный блеск, высокую электропроводность.

Отличительные признаки . Для графита характерна небольшая твердость (графит мягкий), графит легко пишет на бумаге, имеет более или менее постоянный стально-серый, железно-черный цвет. Графит можно спутать с молибденитом. В отличие от молибденита графит растирается пальцами в черную пыль (молибденовый блеск растирается в светло-серый порошок).

Химические свойства . С кислотами не взаимодействует. При нагревании с селитрой дает вспышку. Кусочек цинка, помещенный на поверхности графита и смоченный каплей медного купороса, выделяет пятно меди (отличие от молибденита).

Разновидность : Шунгит -аморфная разность графита.

Происхождение графита

Известные крупные месторождения графита образовались в результате изменения осадочных отложений органогенного происхождения (каменных углей, битумов и т. п.) под действием контактного или глубинного (регионального) метаморфизма. В отдельных случаях графит образовался в результате непосредственной кристаллизации из магм, богатых углеродом, или восстановления известняков, захваченных магматическими породами.

Наибольшее практическое значение имеет графит метаморфического происхождения.

Встречается в контактовой зоне каменного угля с магматическими породами, в гнейсах, в кристаллических сланцах, в мраморах, в контактах магматических пород с известняками, в виде вкраплений в кислых, средних и основных магматических породах, в пневматолитовых образованиях.

Спутники . В контактах магматических пород с известняками: апатит, флогопит. В пневматолитовых образованиях: кварц, полевой шпат, каолинит, апатит, биотит, титаномагнетит. В гнейсах: каолинит.

Применение графита

Графит используется очень широко. Можно сказать, что нет ни одной отрасли, где бы он в той или иной степени ни применялся. Необходим графит главным образом в металлургической промышленности для изготовления огнеупорных тиглей и для покрытия поверхности литейных форм с целью предохранения отливки от пригара формовочной земли; кроме того, в электропромышленности - в производстве электродов и дуговых углей, в производстве карандашей, черных красок, черной копировальной бумаги, типографской краски или же китайской туши. Используется также как смазочное вещество (в тех случаях, когда вследствие высокого нагрева нельзя применять масла) и в паровых котлах в качестве антинакипного средства. В последнее время применяется для изготовления графитовых блоков «атомных котлов» и изготовления космической техники. Из графита получают искусственный алмаз. Графитовая жидкость применяется при объемном прессовании детален автомобилей. Штампы, обволакиваемые этим веществом, обеспечивают высокую чистоту поверхности стальных заготовок, что исключает их последующую обтирку на шлифовальных станках.

Месторождения

Имеются несколько граффито-носных провинций: Украинская, Уральская, Тунгусская (Ногинское, Курейское), Верхне-Саянская (Ботогольское), Уссурийская и другие.

Крупные месторождения графита имеются в Южной Корее, Мексике (штат Сонора), Малагасийской Республике, Шри-Ланке, Индии, ФРГ и Швеции.

). Кристаллическая решетка графита - слоистого типа. В слоях атомы С расположены в узлах гексагональных ячеек слоя. Каждый атом С окружен тремя соседними с расстоянием 1,42Α.

Свойства

Хорошо проводит электрический ток. В отличие от алмаза обладает низкой твёрдостью (1-2 по шкале Мооса). Плотность 2,08 - 2,23 г/см 3 . Цвет чёрно-серый, блеск металлический до жирного. Неплавкий, устойчив при нагревании в отсутствии кислорода. В кислотах не растворяется. Жирный на ощупь. Природный графит содержит 10-12 % примесей глин и окислов железа.

Формы нахождения

Графит (англ. GRAPHITE) - C

КЛАССИФИКАЦИЯ

Strunz (8-ое издание) 1/B.02-10
Dana (7-ое издание) 1.3.5.2
Dana (8-ое издание) 1.3.6.2
Hey"s CIM Ref. 1.25

ФИЗИЧЕСКИЕ СВОЙСТВА

Цвет минерала
Цвет черты чёрный переходящий в стально-серый
Прозрачность непрозрачный
Блеск полуметаллический
Спайность весьма совершенная по {0001}
Твердость (шкала Мооса) 1 - 2
Микротвердость VHN10=7 - 11 kg/mm2
Излом слюдоподобный
Прочность гибкий
Плотность (измеренная) 2.09 - 2.23 g/cm3
Плотность (расчетная) 2.26 g/cm3
Радиоактивность (GRapi) 0

ОПТИЧЕСКИЕ СВОЙСТВА

Тип одноосный (-)
Оптическая анизотропия чрезвычайная
Цвет в отраженном свете железно-чёрный переходящий в стально-серый
Плеохроизм сильный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА

Точечная группа 6mm - Дигексагонально-пирамидальный
Пространственная группа P63mc
Сингония Гексагональная
Параметры ячейки a = 2.461Å, c = 6.708Å
Отношение a:c = 1: 2.726
Объем элементарной ячейки V 35.18 ų (рассчитано по параметрам элементарной ячейки)
Двойникование по {1121}

Перевод на другие языки

Ссылки

  • См. также: Алмаз

Список литературы

  • Лобзова Р.В. Графит и щелочные породы района Ботогольского массива. М., 1975. 124 с.
  • Weinschenk, E. (1900) Zur Kenntniss der Graphitlagerstatten. III. Die Graphitlagerstatten der Insel Ceylon. Bayerischen Akademie der Wissenschaft, 21(2), 281-334.
  • Cirkel, Fritz (1907), Graphite: its properties, occurrence, refining and uses: Department of Mines, Mines Branch, Ottawa, Canada, 307pp.
  • Alling, Harold L. (1917), The Adirondack graphite deposits, New York State Museum Bulletin 199: 7-150.
  • Spence, Hugh S. (1920), Graphite Mines, Branch Report No. 511: Canada Department of Mines, Ottawa: 202pp. + photos.
  • Wesselowski and Wassiliew (1934) Zeitschrift für Kristallographie: 89: 494.
  • Palache, Charles (1941), Contributions to the mineralogy of Sterling Hill, New Jersey: Morphology of graphite, arsenopyrite, pyrite and arsenic: American Mineralogist: 26(12): 709-717.
  • Palache, Charles, Harry Berman & Clifford Frondel (1944), The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana Yale University 1837-1892, Volume I: Elements, Sulfides, Sulfosalts, Oxides. John Wiley and Sons, Inc., New York. 7th edition, revised and enlarged, 834pp.: 152-154.
  • Cameron, Eugene N. and Weis, Paul L. (1960), Strategic graphite - a survey, U.S. Geological Survey Bulletin 1082-E: 201-321.
  • Taylor, R., Gilchris, Ke, and Poston, L.J. (1968) Thermal conductivity of polycrystalline graphite. Carbon: 6: 537-544.
  • Kwiecinska, Barbara (1980), Mineralogy of Natural Graphites: Zaklad Narodowy imienia Ossolinskich; Polska Akademia Nauk: 67: Jun-87.
  • Weis, Paul L. (1980), Graphite skeleton crystals - A newly recognized morphology of crystalline carbon in metasedimentary rocks: Geology: 8: 296-297.
  • Shafranovskii, G.I. (1981), New graphite twins: Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva: 110(6): 716-720.
  • Shafranovskii, G. I. (1982), Crystallomorphology of graphite from the Ilmen Mountains; Mineralogical Research of Endogenic Deposits of the Urals: Academy Nauk CCCP- Uralskii Nauchnuri Tsentr: 44-53.
  • Shafranovskii, G.I. (1982), Graphite twins and triads: Mineralogicheskii Zhurnal: 4(1): 74-81.
  • Shafranovskii, G.I. (1983), Classical and non-classical twinning in graphite: Zapiski Vsesoyuznogo Mineralogicheskogo Obschestva: 112(5): 577-581.
  • Gohla, Karl-Heinz (1984), Graphit aus Kropfmuhl: Magma: 4: 26-51.
  • Jedwab, Jacques and Boulègue, Jacques (1984): Graphite crystals in hydrothermal vents: Nature: 310: 41-43.
  • Weinelt, Winfried (1984), Die Geologie der Graphit- Lagerstatte Kropfmuhl: Magma: 4: 52-56.
  • Weiner, Karl-Ludwig and Hager, Harald (1987), Growth spirals on graphite crystals: Lapis: 12(1): 31-33.
  • Rumble, D. and Chamberlain, C.P. (1988), Graphite vein deposits of New Hampshire: New England Intercollegiate Geologic Conference Guidebook: 241-255.
  • Pearson, D.G., Davies, G.R., Nixon, P.H. and Milledge, H.J. (1989), Graphitized diamonds from a peridotite massif in Morocco and implications for anomalous diamond occurrences: Nature (London): 338 210: 60-62.
  • Bernatowicz, Thomas J.; Amari, Sachiko; Zinner, Ernst K.; and Lewis, Roy S. (1991), Interstellar grains within interstellar grains: Astrophysical Journal: 373: L73-L76.
  • Jaszczak, John A. (1991), Graphite from Crestmore, California: Mineralogical Record: 22(6): 427-432.
  • Kvasnitsa, V.N. and Yatsenko, V.G. (1991), Spherical graphite from the Azov Sea region: Mineralogicheskii Zhurnal: 13(1): 95-101.
  • Lemanski, Chester S. Jr. (1991), Graphite in ore: The Picking Table: 32(1): 13-Nov, 1991.
  • Tsuchiya, Noriyoshi; Suzuki, Shunichi; and Chida, Tadashi (1991), Origin of graphite in the Oshirabetsu gabbroic body, Hokkaido Japan: Journal of Mineralogy, Petrology, and Economic Geology; Japanese Association of Mineralogists, Petrologists and Economic Geologists, Tohoku University, Sendai 980, Japan: 86(6): 264-272.
  • Kvasnitsa, V.N. and Yatsenko, V.G. (1992), Mechanisms of natural graphite crystals growth in the Ukraine: Doklady Academuu Nauk: 4: 73-76.
  • Dissanayake, C.B. (1994), Origin of vein graphite in high-grade metamorphic terrains: Role of organic matter and sediment subduction: Mineralium Deposita: 29: 57-67.
  • Jaszczak, John A. (1994), Famous graphite crystals from Sterling Hill, New Jersey: The Picking Table: 35(2).
  • Semenenko, V. P. and Girich, A. L. (1995), Mineralogy of a unique graphite-containing fragment in the Krymka chondrite (LL3): Mineralogical Magazine: 59: 443-454.
  • Tyler, Ian (1995), Seathwaite Wad and the Mines of the Borrowdale Valle "Blue Rock Publications, Carlisle, England": 220.
  • Jaszczak, John A. (1997), Unusual graphite crystals from the Lime Crest quarry, Sparta, New Jersey: Rocks & Minerals: 72(5): 330-334.
  • Kvasnitsa, V.N. and Yatsenko, V.G. (1997), Growth spirals on graphite crystals from Ukraine: Mineralogicheskii Zhurnal: 19(6): 43-48.
  • Jaszczak, John A. (1998), Unusual graphite crystals from the Lime Crest quarry, Sparta, New Jersey: The Picking Table: 39(1): 20-24.
  • Kvasnitsa, V.N.; Yatsenko, V.G.; and Zagnitko, V.M. (1998), Varieties of Graphite Spherulites from Deposits and Ore Occurrences of Ukraine: Mineralogicheskii Zhurnal, Akademiya Nauk Ukrainy, Kiev, Ukraine: 20(2): 34-39.
  • Hanna, George A. and Jaszczak, John A. (1999), A new find of spherical graphite from Sterling Hill, New Jersey: The Picking Table: 40: 27-30.
  • Kvasnitsa, Victor N.; Yatsenko, Victor G.; and Jaszczak, John A.(1999), Disclinations in unusual graphite crystals from anothosites of Ukraine: Canadian Mineralogist: 37(4): 951-960.
  • Jaszczak, John A. (2000), Palache"s "Contributions to the mineralogy of Sterling Hill, New Jersey": The 900-foot level revisited: Matrix, A Journal of the History of Minerals: 8(3): 137-149.
  • Jaszczak, John A. and Robinson, George W. (2000), Spherical and triskelial graphite from совершеннаяerham, Ontario, Canada: Rocks & Minerals: 75(3): 172-173.
  • Satish-Kumar, M. and Wada, Hideki (2000), Carbon isotope equilibrium between calcite and graphite in Skallen Marbles, East Antarctica: evidence for the preservation of peak metamorphic temperatures: Chemical Geology: 166: 173-182.
  • El Goresy, Ahmed; Gillet, Philippe; Chen, Ming; Künstler, Friedel; and Graup, Günther and Volker, Stähle (2001), In situ discovery of shock-induced graphite-diamond phase transition in gneisses from the Ries Crater, Germany: American Mineralogist: 86: 611-621.
  • Jaszczak, John A. (2001), Palache"s "Contributions to the Mineralogy of Sterling Hill, New Jersey", The 900-foot level revisited: The Picking Table: 42(1).
  • Jaszczak, John A. and Rakovan, John (2002), Growth spirals on graphite crystals from the Trotter Mine dump, Franklin, New Jersey: The Picking Table: 43(2).
  • Rakovan, John and Jaszczak, John A.(2002), Multiple length scale growth spirals on metamorphic graphite {001} surfaces studied by atomic force microscopy: American Mineralogist: 87: 17-24.
  • Jaszczak, John A.; Robinson, George W.; Dimovski, Svetlana; Gogotsi, Yury (2003), Naturally Occurring Graphite Cones: Carbon: 41(11): 2085-2092.
  • Santosh, M.; Wada, H.; Satish-Kumar, M.; And Binu-Lal, S.S. (2003), Carbon isotope "stratigraphy" in a single graphite crystal: Implications for the crystal growth mechanism of fluid-deposited graphite: American Mineralogist: 88: 1689-1696.
  • Stadermann, F. J., Croat, T. K., and Bernatowicz, T. (2004) "NanoSIMS Determination of Carbon and Oxygen Isotopic Compositions of Presolar Graphites from the Murchison Meteorite", 35th Lunar and Planetary Science Conference, March 15-19, League City, Texas, abstract no.1758.

Описание и свойства графита

Графит – это природный элемент, легко раскалываемый минерал, одна из модификаций углерода. Графит – материал очень мягкий, легко поддающийся механической обработке, обладает металлическим блеском. Графитовая формула – С (углерод).

Электропроводность графита, фото которого можно посмотреть выше, превышает электропроводимость в 2,5 раза. Удельное сопротивление электротока с температурой в 0 градусов находится в границах 0,390-0,602 Ом, а его самое низкое значение для различных видов данного элемента одно и то же – 0,0075 Ом.

Элемент отличается повышенной теплопроводимостью, коэффициент которой в 5 раз выше, чем имеет кирпич (0,041). Графитные отличаются более низкой теплопроводностью. Пределы температуры плавления – 3845-3890 С, кипение начинается при 4200 С. Во время сжигания элемента выделяется 7832 ккал тепла. Графит является диамагнитным.

Его основные химические свойства – инертность по отношению к жидкостям, газам и твёрдым веществам, способность растворяться в расплавленных металлах, с точкой плавления превышающей его собственную. На высокой температуре может взаимодействовать с другими элементами.

Не эластичен, но в то же время изгибается и режется. Благодаря жирности и пластичности имеет широкое применение в промышленном производстве. Жирность также позволяет применять его как смазочный материал. Плотность графита 2,23 г/ см3.

Графит отличается слоистой структурой, имеющей свои особенности. Атомы углерода кристаллической решётки графита представляют собой сотовые ячейки: шестиугольники, расположенные рядами. В каждом ряду атомы плотно связаны друг с другом, а ряды между собой имеют слабую связь. Поэтому графит легко сломать даже если только слабо надавить.

Твёрдость по шкале Мооса приравнивается к единице, в то время как у алмаза – десять, несмотря на тот факт, что алмаз и графит – это углеродовые подвиды. Всё дело в кристаллической решётке. У алмаза один атом углерода связан с четырьмя лежащими рядом. На основе исследований учёные доказали, что кристаллическая решётка графита при температуре выше 1500 С может преобразоваться в решётку алмаза.

В процессе переработки как физические, так и химические свойства графита меняются, поэтому его классифицировали на марки, которые имеют соответствующие различия. В промышленности отдельная марка графита используется для определённого вида продукции.

Графит подразделяется на естественный (природный) и искусственный. При его производстве учитывают свойства в зависимости от назначения продукции. Естественный в свою очередь делится на графит кристаллический и скрытокристаллический, представляет собой порошок, похожий на порох.

Производители продукции из графита предъявляют свои требования к сырью в зависимости от его назначения. В соответствии с этим проведена маркировка, и сейчас вырабатываются различные марки графита , имеющие каждая свое предназначение.

Среди них электроугольная, , элементная, аккумуляторная, карандашная, смазочная, а также специальная марка по производству графита для ядерных реакторов. Весь производимый графит должен соответствовать техническим требованиям в зависимости от области его применения.

Месторождения и добыча графита

Ресурсы графита во всём мире составляют примерно 600 млн т, а его ежегодная добыча свыше 600 тыс. т. Наибольшими запасами владеют Мексика, Китай, Чехия, Бразилия, Украина, Россия, Южная Корея, Канада. Образовался этот минерал метаморфизацией осадочных пород из органических соединений. Месторождения графита с давних времён представляют интерес с экономической точки зрения и оцениваются мощностью в миллионы тонн.

Разработка этих месторождений обеспечивает промышленность необходимым сырьём. Натуральный графит встречается в виде плотных кристаллических или волокнистых вкраплений в , породы, , . Он образует большие скопления в виде непрозрачных, серых, землистых или чешуйчатых масс. Цвет графита в пределах от серого стального до чёрного. Кусковой графит добывают подземным способом, а графитовую руду – открытым.

Применение графита

И производители, и обыватели уже давно знакомы с графитовым веществом , зарекомендовавшим себя наличием качеств, которые позволяют применять его не только для производственных процессов, но и в повседневной жизни.

Благодаря таким основным свойствам как электропроводность и огнеупорность, этот минерал нашёл широкое применение в промышленности. Металлургия использует его для изготовления тугоплавких ковшей, форм для , ёмкостей для кристаллизации. Литейное производство применяет графитовый порошок как смазку форм для литья.

Является одной из составляющих при изготовлении огнеупорного кирпича. Полировочные и шлифовальные пасты получают из графитовых смесей. Учитывая электропроводящие свойства природного элемента, он незаменим для изготовления контактов электроприборов и электродов.

Промышленность по производству графитовых карандашей, смазочных материалов и изготовления красок тоже не обходится без этого вещества. Стержни для карандашей изготавливаются из чёрного графита , хотя в природе существует серый графит со стальным блеском. Является наполнителем пластмассы, с его помощью налажено производство искусственных алмазов.

Даже атомная энергетика оценила свойства графита и взяла его на использование. Машиностроение – материал для подшипников, уплотнительных и поршневых . В быту также стали использовать графитовую смазку – обрабатывать автомобильные рессоры, велосипедные цепи, даже дверные петли.

Покрасочным средством, обладающим антикоррозионными качествами является краска графитовая . Она представляет собой однокомпонентную суспензию. В её состав, кроме графитового наполнителя, входят пластификатор и связующие пигменты. Применяя такую краску, защищают бетонные, стальные, деревянные, алюминиевые, чугунные изделия от коррозии.

В медицине графит зарекомендовал себя как одно из гомеопатических средств при кожных заболеваниях, являющихся следствием внутренних и трудно поддающихся терапии нарушений. Препятствует образованию спаек и рубцов после воспалений, а также влияет на обменные процессы. Заболевания, на которые благотворно воздействует графит, сложно перечислить, поэтому он входит в состав многих лекарственных препаратов.

Цена графита

Продажей графита занимаются специализированные компании, занимающиеся добычей и переработкой графита, цены на который достаточно приемлемы. Ценовая категория природного графита зависит от размеров его и содержания углерода. Каждый сорт графита имеет свою стоимость – чем выше содержание углерода, тем лучше технические свойства, и тем он дороже.

Реализация данного минерала производится как в розницу, так и оптом. Потребитель может графит купить на выгодных для него условиях. При покупке оптом делается скидка, обеспечивается его доставка. Стоимость зависит и от региональной принадлежности. Средняя цена на графит примерно 45 руб/кг. Готовая продукция стоит дороже.

Помимо широко распространенных в природе соединений с кислородом (карбонатов) и водородом (углеводородов) углерод присутствует в самородном виде, образуя две полиморфные разновидности - графит и алмаз , идентичные по своему составу, но резко отличающиеся по структуре и физическим свойствам.

Синонимы:
Пломбагин (де Лиль, 1783), черный свинец, меланграфит (Хайдингер, 1845), графитоид (Зауер, 1885), графитит (Люци, 1891).

Английское название минерала Графит - Graphite

Происхождение названия

Графит известен с древних времен, назван от греческого "графо" - пишу (Вернер, 1789).

Химический состав

Даже чисто отобранный, всегда содержит абсорбированные газы - главным образом Н, N, в меньшем количестве СО з , СО, CH 4 , иногда NH 3 , H 2 S, а также Н 2 О. Нередко содержит механические примеси, которые при сжигании полностью или частью остаются в золе; иногда содержит битумы. В золе, кроме Si, Al, Fe, Mg, Са и щелочей, могут присутствовать S, Р, Си, Ni, Мо, Mn, а также Be, Ge, Ti, V, благородные металлы и др. Наличие в золе V характерно для графита органогенного происхождения. Fe, возможно, иногда содержится в виде твердого раствора.

Разновидности графита

  • Шунгит - аморфная разновидность графита (переходная разность между каменным углем и графитом).
  • (Graphitit) = аморфный разновидность графита
  • Графитовая слюдка (Graphitglimmer), излишнее название = графит

Шунгит - shungite (Иностранцев, 1879). Впервые обнаружен около с. Шунгав (Карелия, Россия). Относится к группе антраксолитов, является промежуточным продуктом между аморфным углеродом и графитом. Содержит кристаллическую фазу в виде очень тонкодисперсного графита. Выделяют четыре разновидности, отвечающие различной степени метаморфизма и различному содержанию углеродистого вещества.

Шунгит I наиболее близок к графиту. Излом его раковистый. Твердость 3,5-4. Плотность 1,84-1,98. Цвет черный; с едва заметным буроватым отливом. Блеск сильный полуметаллический. Непрозрачен. Содержит мельчайшие включения кварца , доломита , кальцита , пирита и др. Электропроводность близка к таковой графита.


В полированных шлифах латунно-желтый (напоминает пирротин). Двуотражения (в отличие от графита) не обнаруживает. Заметно анизотропен.
Содержит 93-98% С, до 3-4% соединений водорода, также N, О, S, до 8% гигроскопической воды; в золе - значительные количества V, Ni, Мо, а также W, Се, As; по спектральным анализам: Со, Ti, Mg, Sr, Си, Сг, Zr, Rh, Ru, Pt, Mn. Содержание V, характерное для шунгита, по данным Мармо, связано с примесями.
Под паяльной трубкой растрескивается и сгорает чрезвычайно медленно. Крепкие H 2 SO 4 и HNO 3 окисляют тонкий порошок лишь при длительном кипячении.
Шунгит II, III и IV - разновидности со слабым и с матовым блеском содержат соответственно всего 40-60%, 28-44% и меньше 15% углерода.
Имеет очень ограниченное распространение. Образовался, по-видимому, в результате метаморфизма докембрийских битуминозных осадочных пород под воздействием диабазов. В Карелии слагает прожилки, линзочки на контакте известняков и диабазов, пропитывает сланцы. Наблюдался в нескольких местах в р-не Онежского оз. в Карелии и в Финляндии, отмечался в Бурятии и Якутии, а также на Урале - в магнезитах Сатки (Челябинская обл.) и в породах спилито-альбитофировой формации около Красноуральска (Свердловская обл.), где приурочен к контактам спилитов и альбитофиров с прослоями метаморфизованных осадочных и туфогенно-осадочных пород.
Может быть использован как удобрение, в качестве топлива в специально приспособленных топках, как сырье для извлечения V, Мо, в металлургии (в качестве заменителя кокса и носителя легирующих

Кристаллографическая характеристика

Сингония гексагональная.

Класс гексагонально-дипирамидальный.

Кристаллическая структура. Структура слоистого типа. В бесконечной плоской сетке каждая петля представляет шестиугольник бензольного типа; около каждого атома С имеются три соседних на таком же расстоянии. Параллельные сетки отстоят друг от друга на значительном расстоянии. На период с приходятся две такие взаимно параллельные сетки, которые взаимно смещены так, что над центром шестиугольника нижней сетки находится узел верхней сетки. Ввиду слабой связи между сетками эта закономерность строения решетки графита часто нарушается, и по отношению к центру шестиугольника одного слоя верхний и нижний слои располагаются так, что тройки лучей С - С, находящиеся над и под осью среднего кольца, взаимно повернуты на 180°. Если такое нарушение строения решетки графита проявляется в большом масштабе, то говорят о ромбоэдрической (трехслойной) модификации графита. Возможны и другие нарушения в чередовании слоев. Наличие в решетке подвижных электронов обусловливает ряд свойств графита, приближающихся к свойствам металлов: цвет, блеск, электро- и теплопроводность, кислотоупорность и т. п. Различие связей в решетке в направлении слоистости и перпендикулярно к нему вызывает резко выраженную анизотропию твердости, электропроводности, магнитных, оптических и других свойств.

Главные формы : Кристаллы таблитчатые по (0001), несовершенные; образуют шестиугольные пластинки с развитыми гранями (h0hl) при отсутствии или подчиненном значении (hh2hl). Наиболее обычны формы: с, r, о, q, р.
На гранях наблюдается штриховка.

Форма нахождения в природе

Облик кристаллов . Кристаллы редки. образует мелкие пластинчатые (шестиугольные) кристаллы.

Двойники по (1121) образуются в результате действия давления, проявляются на (0001) в виде тригональной или гексагональной штриховки; редки двойники вокруг с поворотом на 30° (90°). Наблюдались ориентированные срастания с биотитом .

Агрегаты . Отдельные мелкие чешуйки и пластинки, сферические конкреции радиально-лучистого, реже концентрического строения, агрегаты чешуек различной величины, иногда землистый.

Физические свойства

Оптические

  • Цвет кристаллов темно-серый, серебристый, цвет агрегатов железно-черный до стально-серого.
  • Черта темно- свинцово-серая, черная блестящая
  • Блеск сильный металлический,
  • Отлив у скрытокристаллического - матовый.
  • Прозрачность. Просвечивает лишь в очень тонких листочках.

Показатели преломления

Ng = , Nm = и Np =

Механические

  • Твердость 1-2, на (0001) - 5,5; у высокодисперсных агрегатов твердость возрастает с увеличением степени дисперсности. Листочки упругие сопротивление их на разрыв 2 кг/мм 2 (Шапиро).
  • Плотность 2,21-2,26.
  • Спайность в одном направлении по (0001) совершенная.
  • Излом яснокристаллических агрегатов зернистый, плотных - ровный.

Химические свойства

Химическая стойкость. Кислотоупорен. В полированных шлифах графит ни одним из стандартных реактивов не травится.
При нагревании с дымящей HNO 3 чешуйчатый графит вспучивается (реакция Броди). При длительном нагревании в смеси дымящей HNO 3 с бертолетовой солью (KClO 3) образуется графитовая кислота. На основе некоторого различия в отношении к HNO 3 и KNO 3 было предложено (Люди 1891) различать две разности - α и β.

Прочие свойства

Коэффициент трения очень низкий, с чем связаны «жирность» на ощупь и применение в качестве смазочного материала.

Хороший проводник электричества. Электропроводность резко убывает при повышении температуры (Датэ) и возрастает с увеличением влажности и содержания летучих (Вада). Сильно выражена анизотропия магнитных свойств.

Термическая стойкость. Температура плавления 3550° + 50° . При нагревании в воздухе начинает окисляться выше 400° (чешуйки восточно-забайкальского при температуре ниже 300°); скорость окисления (горения) зависит от строения агрегатов: крупночешуйчатого- 720-730°, мелкочешуйчатого ботогольского - 680°.

Искусственное получение

В электрических печах при температурах выше 2200° графит получается из антрацита и из аморфного углерода (ачесоновский графит). Выделяется при раскристаллизации металлов, особенно в сером чугуне. В виде шестиугольных пластинок был получен из силикатного расплава с примесью сажи и флюорита. Образуется из алмаза при нагревании в вакууме при~2000°; при этом графита ориентируется параллельно алмаза. Может быть получен при низком давлении и при температуре до 1000° в результате раскисления СО 2 и СО, образующихся при диссоциации СаСО 3 (опыты Олинга, Винчела и Фрауэнфельдера, по Шапиро).

Диагностические признаки

Характерны цвет, жирность на ощупь, низкая твердость, мягкость (пишет на бумаге), пачкает пальцы. кислотоупорность.

Мелкие чешуйки от очень сходного молибденита отличаются более темным цветом и менее сильным блеском. В отражательном свете по характеру двуотражения и анизотропии определяется легко. Может быть принят лишь за молибденит (отличается коричневатым оттенком и низкой отражательной способностью - Re), за валлериит и тенорит , отличающиеся по парагенезису; валлериит, кроме того, характеризуется высокой отражательной способностью, тенорит - меньшим двуотражением. Изотропный скрытокристаллический графит в очень мелких выделениях трудно отличим от сульванита, отражательная способность которого, однако, выше средней отражательной способности графита.
Межплоскостные расстояния графита (по Михееву) Fe-антикатод, D = 140,00 мм

Происхождение и нахождение

Широко распространенный минерал, образующий местами крупные скопления. Возникает при высоких температурах - при кристаллизации магмы, при образовании жильных месторождений и при процессах метаморфизма.

Месторождения

Образование скоплений графита в магматических породах связано с ассимиляцией магмой известняков, битуминозных или углистых пород. Некоторые месторождения этой группы имеют промышленное значение. Наиболее известным среди них является Ботогольское (Алиберовское) месторождение в Бурятии, в котором графит образует штоки, гнезда, жилообразные тела и рассеянные выделения среди сиенитов по близости от известняков. Спутники графита - микроклин, эгирин-авгит, альбит, кальцит, сфен и др. В Черемшанском месторождении (Ильменские горы в Челябинской обл.) графит наблюдается в граните в виде сферолитов, гнезд и неправильных выделений. Выделения графита среди гранитов установлены также в округе Клей (шт. Алабама, США). В Овифаке (Зап. Гренландия) графит обнаружен в базальтах вместе с самородным железом, на Гарце (Германия) - в порфирах, порфиритах и габбро, в Малаге (Испания)-среди серпентинита и диорит-порфирита, в Новом Южном Уэльсе (Австралия)-в фельзитах, слагающих дайку. Выделения графита, частью имеющие практическое значение, наблюдаются во многих пегматитовых жилах (графитоносные пегматиты Украины, Таджикистана, Бразилии, Индии, Гренландии, США, Италии, Канады и других стран).
Из высокотемпературных жильных месторождений графита наибольшей известностью пользуются месторождения Цейлона, имеющие большое промышленное значение. Графитовые жилы здесь залегают главным образом среди гнейсов; они состоят почти нацело из графита или содержат наряду с ним пирит, титаномагнетит, кварц, биотит, ортоклаз, апатит, ортит, рутил, цеолиты, кальцит и другие минералы. Шильные месторождения графита такого же типа имеются в Канаде (пров. Квебек), США (шт. Монтана), в Англии (Камберленд) и в других странах.
Отмечается наличие графита в некоторых кварцевых жилах с вольфрамитом , в некоторых золотоносных кварцевых жилах, среднетемпературных гидротермальных свинцово-цинковых месторождениях и др.
В скарновых месторождениях графит наблюдается в ассоциации с гранатом, везувианом, диопсидом, волластонитом, тремолитом, скаполитом, кальцитом, апатитом и другими минералами; некоторые месторождения этой группы являются промышленными. Таковы месторождения Канады - Луиза (пров. Квебек) и Порт-Элнслей (пров. Онтарио). В месторождении Тас-Казган (Узбекистан) графит приурочен к контакту габбро-норитов с битуминозными породами.

Широко развит в метаморфических породах, гнейсах и сланцах, в виде отдельных рассеянных чешуек, скоплений, линзовидных и пластовых залежей. Образуется в результате глубокой метаморфизации древних осадочных пород, первоначально содержавших значительные количества органических остатков (битуминозных), или карбонатных отложений. Таковы широко развитые чешуйчатые выделения в гнейсах и сланцах Украины - результат интенсивной метаморфизации древних кристаллических пород, возможно, при участии летучих (месторождения Старо- Крымское, Завьяловское и др.), Союзное месторождение на Малом Хингане в Амурской обл., Тайгинское и Мурзинское месторождения Свердловской обл., богатые месторождения в гнейсах около Пассау (Германия), в метаморфизованных известняках Паргаса в Финляндии, Эшленд в шт. Алабама (США), крупные месторождения чешуйчатого графита на Мадагаскаре и др.
Широко развиты месторождения скрытокристаллического графита, связанные с метаморфизацией каменных углей. В соответствии с различными условиями метаморфизма степень метаморфизации углей различна. Графит образует прослойки, пласты и пластовые залежи. Под влиянием контактного воздействия траппов на угольные пласты образовались, например, крупные залежи западной части Тунгусского угольного бассейна (Красноярский край), состоящие из мельчайших выделений графита с примесью пирита, кальцита, небольших количеств апатита, рутила, магнетита и др. С метаморфизмом каменных углей связано также образование некоторых графитовых месторождений Урала (Боевское, Полтавское, Брединское, Фадинское Челябинской обл.). Тонкодисперсный графит, выявляемый лишь рентгеновским анализом, содержится во многих ископаемых каменных углях.
Графит содержится в некоторых элювиальных, реже в аллювиальных россыпях, образующихся при выветривании графитсодержащих пород.
В сублиматах вулкана Билюкай на Камчатке графит в виде налета на нашатыре образовался, вероятно, в результате действия лавового потока на растительность (по устному сообщению Набоко). Отмечается наличие графита в каменных и железных метеоритах.
Неясен генезис пленок графита на кристаллах алмаза в южноафриканских месторождениях.


Завальевское месторождение чешуйчатого графита


Графит. Крупночешуйчатый агрегат. Украина. Завалье

Многочисленные промышленные залеж и чешуйчатого графита Украинской графитоносной провинции связаны с архейскими образованиями тетерево-бугской серии в составе Украинского кристаллического массива. Эта серия сложена сильно дислоцированными амфиболитами, амфиболовыми, плагиоклазовыми, пироксеновыми, силлиманитовыми и гранатовыми гнейсами, кварцитами и кристаллическими известняками, перемежающимися с графитистыми биотитовыми, серицитовыми, биотит-хлоритовыми и хлоритовыми гнейсами, имеющими нередко промышленное значение. В пределах провинции выделяют три рудных района: Прибугский (по рекам Тетерев и Буг), Криворожский (по р. Ингулец) и Приазовский (вдоль побережья Азовского моря). Все месторождения провинции имеют большую промышленную ценность благодаря высокому качеству графита, большим масштабам оруденения, легкости о богащения руд и возможности открытой разработки.

Завальевское месторождение, расположенное на левом берегу Юж. Буга, является типичным представителем этой провинции. Геологически оно приурочено к крупной синклинальной складке запад-северо-западного направления с крутыми (вплоть до вертикальных) углами падения пород в крыльях. Центральная часть складки выполнена кристаллическими известняками, окаймляемыми кварцитами; мощность известняков 500 м, кварцитов 20-50 м. Ниже по разрезу находятся графитоносные гнейсы (продуктивная толща), мощность которых не выдержана: в северном крыле она достигает 250 м, а в южном - резко сокращается до 15 м. Продуктивная толща подстилается бёзрудными амфиболовыми гнейсами. Синклиналь зажата между гранитами, обнажающимися в северной части месторождения, и прорвана кварцевыми жилами, дайками гранитов и гранит-аплитов. Кристаллические породы на участке месторождения повсеместно перекрыты третичными и четвертичными песчано-глинистыми отложениями мощностью до 35-40 м.

Продуктивная толщ а графитоносных биотит-хлоритовых и полевошпат-гранатовых гнейсов состоит из нескольких (1-5) графитсодержащих горизонтов, разделенных безрудными гнейсами. Мощность этих горизонтов варьирует от 3,5 до 70 м, а протяж енность составляет сотни метров; в них по данным опробования оконтуриваются промышленные рудные тела пластовой и линзовидной формы, сложенные вкрапленными рудами. Графит в этих телах крупночешуйчатый (размером от 0,1 до 1-2 мм) со средним содержанием 6- 10%. Иногда чешуйки графита объединяются в пятнистые скопления - агрегаты. Помимо графита в составе руд присутствуют кварц, калиевый полевой шпат, плагиоклаз, а так ж е небольшие количества биотита, хлорита, граната,
кальцита, апатита, циркона и пирита.

В четко выраженной коре выветривания, развивающейся по графитоносным гнейсам, наблюдается зональность. В верхней (рыхлой) зоне широко развиты глинистые минералы. Минеральный состав руд: графита до 10%, до 50% глинистых минералов (гидрослюды, монтмориллонит, каолинит , нонтронит и д р.); 25% кварца; до 10% гидроксидов железа; до 10% гранатов и полевых шпатов. В средней (полурыхлой) зоне при сохранении содержания графита (до 10%) увеличивается количество кварца (30-4 0%) и полевых шпатов (10- 2 5 %), появляются слюды (10- 15%), гранат, силлиманит и апатит (до 10%), одновременно сокращается доля глинистых минералов (10-4 0 %). Нижняя (плотная) зона коры выветривания по своему минеральному составу близка первичным (твердым) рудам месторождения. Благодаря тому что в коре выветривания чешуйки графита освобождены от срастания с другими минералами (раскрыты), эти руды (так называемые мягкие) еще более легко обогатимы, представляя первоочередной объект промышленной разработки. Рыхлые и твердые руды месторождения обогащаются флотацией с получением концентрата, содержащего 85-90% графита высокого качества зольностью не выше 10- 15%. По разведанным запасам и масштабу добычи месторождение является одним из крупнейших в стране. Большинством исследователей генетически Завальевск о е месторождение рассматривается как метаморфическое, образовавшееся в процессе регионального метаморфизма первично-осадочных алюмосиликатных пород, содержащих в своем составе рассеянное углеродное вещество. Отдельные геологи (В. П. Бухаров, В. Б. П о лянский и др.) полагают, что образование графита в гнейсах происходило за счет углерода, освобождавшегося при дегазации карбонатных пород, сопровождавшейся разложением оксида углерода (реакция Будуара). Наконец, имеются данные о том, что наряду с графитом, образовавш имся за счет первично-осадочного углерода, в гнейсах может быть и более поздний графит, связанный с глубинным источником углекислоты (А. Ф. Коржинский и др.).

Практическое применение

Графит имеет очень разнообразное применение, основанное на его «жирности», кислотоупорности, огнестойкости, электропроводности. Идет на изготовление тиглей для плавки стали и цветных металлов (около 65-70% общего потребления), широко применяется в электротехнике (для изготовления электродов), как смазочный материал, при производстве красок, карандашей и др. Наиболее ценным считается кристаллический графит; скрытокристаллические разности употребляются лишь в литейном деле, как наиболее дешевое сырье.

Мировая добыча природного графита осуществляется в немногих странах и приближается к 600 тыс. т/год. Почти половина ее приходится на КНР и Россию, разрабатываю щ ие месторождения кристаллического и аморфного графита. Крупными продуцентами кристаллического графита являются Чехия, Германия, Малагасийская Республика, Норвегия, Шри-Ланка, а аморфного - Индия,
Мексика, КНДР, Южная Корея, Австрия. Мировое производств0 синтетического графита составляет около 1,5 млн т и осуществляется в промышленно развитых странах, не обладающих существенными природными запасами этого сырья: США, Канаде, Японии, странах Западной Европы.

Область применения графита, описание и свойства. Виды природного и искусственного графита - химическая структура, механические и физические характеристики.

Графит (от др.-греч. γράφω - пишу) – это природный материал, относящийся к классу самородных элементов, аллотропная модификация углерода. Он имеет слоистую структуру. Каждый слой кристаллической решетки графита может по-разному располагаться по отношению друг к другу, образуя политипы. Графит находит свое применение в производственной и промышленной деятельности. Графитовые изделия отличаются повышенными эксплуатационными характеристиками. Графит устойчив к химическим и природным воздействиям, он достаточно прочный, хорошо проводит электрический ток, отличается низкой твердостью, относительной мягкостью, после воздействия высоких температур затвердевает. Плотность составляет 2.23 г/см 3 . Графит имеет металлический блеск и темно-серый цвет. Теплопроводность этого минерала достаточно большая, поэтому его используют для изготовления комплектующих деталей электрооборудования.

Структура и состав графита

Структура имеет свои определенные особенности. Атомы углерода ковалентно связаны между собой.

Модификаций природного минерала существует две:

  • α-графит (гексагональный). В данной модификации половина атомов каждого из слоев располагается под и над центром шестиугольника.
  • β-графит (ромбоэдрический). В этой модификации графита каждый четвертый слой атомов повторяет первый. В природе он в чистом виде не наблюдается. При температуре от 2500 до 3300К ромбоэдрический графит переходит полностью в гексагональный. Природный материал удобно представляется в гексагональных узлах.

Химический состав графита не отличается чистотой. В большом количестве (до 10-20%) присутствует зола, состоящая из разных составляющих (FeO, SiO2, Аl2O3, MgO, Р2О5, CuO, СаО и др.), газы (до 2%) и битумы, иногда вода.

Цвет преобладает железно-черный, доходя до стально-серого. Имеет сильный металловидный блеск; скрытокристаллические агрегаты не блестят, матовые. Показатель преломления графита Nm==l,93-2,07. На ощупь жирный, оставляет след на бумаге и пальцах. Удельный вес графита 2,09-2,23 (меняется исходя от степени дисперсности и присутствия тончайших пор), у шунгита 1,84-1,98. Обладает высокой электропроводностью, что связано с очень плотным расположением атомов в листах.

Графит не плавится, если накаливать в струе кислорода, то сгорает тяжелее в сравнении с алмазом. Улетучивается лишь в пламени вольтовой дуги, не плавясь. В кислотах не растворяется. В смеси с KNO3 порошок при нагревании дает вспышку.

Графит в природе

В природе содержится в гранитах, пирите. Он образуется в магматических и вулканических горных породах, скарнах и пегматитах при высоких температурах, встречается в кварцевых жилах с различными материалами, широко распространен в мраморе, кристаллических сланцах, гнейсах. В результате пиролиза под воздействием на каменноугольные отложения траппов образуются крупные залежи природного минерала.

Показатели:

  • Содержание минералов 2.0%
  • Содержание углерода > 98.0%
  • Содержание серы 550 ppm
  • Температурный диапазон -200...3000°C
  • Выщелачиваемый хлорид 50 ppm
  • Сжимаемость 40%
  • Регенерация 15%
  • pH диапазон 0-14
  • Проседание под нагрузкой

Виды природного графита:

  • тигельный (используется для производства огнеупорных изделий. Он отличается повышенной теплопроводностью и стойкостью к резким температурным перепадам),
  • литейный кристаллический (имеет низкий коэффициент расширения, характеризуется прочностью при высоких температурах, используется при отливе деталей),
  • аккумуляторный (применяется как добавка, графит используется для производства электродов, отличается повышенными техническими и химическими свойствами),
  • для производства стержней для карандашей (тонкодисперсный, мягкий, не содержит примесей железа),
  • элементный (графит используется для производства гальванических элементов, отличается повышенной тепло- и электропроводностью),
  • электроугольный,
  • для изготовления смазок и электропроводящей резины.

Искусственный графит - область применения

Искусственно производится конструкционный, мелкозернистый, антифрикционный и литейный графит. Область применения материала достаточно широкая. Графит используется для изготовления огнеупорных материалов, электрических машин и установок, в химической, горнодобывающей промышленности, а также на производстве. Из него также изготавливают стержневые карандаши, краски, покрытия и аккумуляторные батареи. Графит незаменим в ядерной промышленности и в других узконаправленных областях.

Публикации по теме