Сравнение электростанций различного типа. Характеристика и основные параметры электростанций

Топливно-знергетический комплекс ЭЛЕКТРОЭНЕРГЕТИКА Учитель географии Головко О.Н 2011-2012 уч. год

Цели урока: Показать значение, роль и состав электроэнергетики России Сформировать представление об основных типах электростанций и их размещении Выявить проблемы электроэнергетики Развивать умение работать с различными источниками географической информации.

Практическое задание: Пользуясь текстом учебника и картами атласа, дайте характеристику ТЭС, ГЭС и АЭС по плану: Доля от общего объема электроэнергии, производимой в стране Недостатки ЭС Достоинства Факторы размещения Крупнейшие электростанции (показать на карте)

Информацию оформить в виде таблицы Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС

Теплоэлектростанции (ТЭС) Сургутская ТЭС

Таблица: Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС ТЭС 65 Стоимость и время строительства невелики, используются разные виды топлива, дешевый вид электроэнергии Использование исчерпаемых ресурсов, сильное загрязнение окружающей среды (воздух, почва) Топливный Потребления (вблизи газопроводов) Сургутская

Гидроэлектростанции (ГЭС) Красноярская ГЭС

Определите районы с наибольшими запасами гидроэнергии В каких районах затраты на производство минимальны? В каких районах наиболее перспективно строительство ГЭС?

Таблица: Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС ГЭС 19 Не загрязняет атмосферу, используются возобновимые ресурсы, самый дешевый вид электроэнергии Строительство долго и дорого, водохранилища затапливают с/хоз. угодья, изменяют микроклимат территорий, гидрологический режим, «мертвая вода» На реках с большим падением, в малообжитых, горных районах Саяно-Шушенская, Краснояр-ская

Атомные электростанции (АЭС) Билибинская АЭС

Таблица: Тип ЭС Доля % Достоинства Недостатки Факторы размещения Крупнейшие ЭС АЭС 16 Экономичность Опасность радиоактивного загрязнения при авариях, проблема захоронения ядерных отходов Отсутствие других источников энергии, потребительский Курская, Смоленская, Тверская, Кольская, Нововоронежская, Билибинская

Почему человечество ищет нетрадиционные источники энергии?

Приливные электростанции (ПЭС) Кислогубская ПЭС Кислогубская ПЭС

Геотермальные электростанции (ГеоЭС) Мутновская ГеоЭС

Мутновская ГеоЭС

Выводы: Электроэнергетика использует природные ресурсы, как исчерпаемые так и неисчерпаемые. Электроэнергетика является загрязнителем окружающей среды Для уменьшения нагрузки на природу необходимо бережное и экономное расходование электроэнергии, а также более широкое применение нетрадиционных источников: энергии солнца, ветра, приливов и отливов.

Источники информации: В.И. Дронов, В.Я. Ром. География. Россия. Население и хозяйство. Учебник для 9 класса

Предварительный просмотр:

Технологическая карта урока

Топливно-энергетический комплекс. Электроэнергетика

Тип урока: комбинированный

Цели и задачи:

  1. Показать значение, роль и состав электроэнергетики России
  2. Сформировать представление об основных типах электростанций и их размещении
  3. Выявить проблемы электроэнергетики
  4. Развивать умение работать с различными источниками географической информации.
  5. Формировать экологическую культуру, сознание бережного и экономного расходования электроэнергии.

Виды деятельности учащихся:

фронтальный опрос по пройденному материалу; самостоятельная групповая работа (или работа в парах) с учебником: с текстом, наглядным и картографическим материалом; анализ карт, составление систематизирующей таблицы.

В связи с недостатком местных потребителей и энергосистем, существуют предложения дискретной работы электростанции на энергоёмкий потребитель - регулятор, например, производство водорода, который затем транспортируется к возможным потребителям. Рассматриваются также варианты экспорта электроэнергии в страны южной Азии.

Кислогубская ПЭС - экспериментальная приливная электростанция расположенная в губе Кислая Баренцева моря вблизи поселка Ура-Губа Мурманской области. Первая и единственная приливная электростанция России. Состоит на государственном учёте как памятник науки и техники.

Общие сведения

Мощность станции - 1,7 МВт (первоначально 0,4 МВт).

Станция установлена в узкой части губы Кислая, высота приливов в которой достигает 5 метров. Конструктивно станция состоит из двух частей - старой, постройки 1968 года, и новой, постройки 2006 года. Новая часть присоединена к одному из двух водоводов старой части. В здании ПЭС размещено два ортогональных гидроагрегата - один мощностью 0,2 МВт (диаметр рабочего колеса 2,5 м, находится в старом здании) и один ОГА-5,0 м мощностью 1,5 МВт (диаметр рабочего колеса 5 м, находится в новом здании). Гидротурбины изготовлены ФГУП «ПО Севмаш» генераторы - ООО «Русэлпром

Кислогубская ПЭС принадлежит ОАО «РусГидро» в лице его 100 % дочернего общества - ОАО «Малая Мезенская ПЭС».

История создания и эксплуатации

Кислогубская ПЭС была сооружена в 1968 году по проекту института «Гидропроект». Главный инженер проекта и строительства Л. Б. Бернштейн. Строительство ПЭС было произведено передовым для того времени наплавным способом - железобетонное здание ПЭС было сооружено в доке вблизи Мурманска, а затем отбуксировано к месту установки по морю В одном из водоводов ПЭС был смонтирован французский капсульный гидроагрегат мощностью 0,4 МВт с диаметром рабочего колеса 3,3 м, второй водовод, предназначавшийся для гидроагрегата отечественной разработки, был оставлен пустым.

После пуска ПЭС была передана на баланс «Колэнерго» и использовалась НИИЭС в качестве экспериментальной базы. В 1994 году, в связи со сложной экономической ситуацией, ПЭС была законсервирована; за время эксплуатации было выработано 8,018 млн кВт·ч электроэнергии [ .

В начале 2000-х годов руководством РАО «ЕЭС России» было принято решение о восстановлении Кислогубской ПЭС в качестве экспериментальной базы для отработки новых гидроагрегатов для приливных электростанций, а также технологий сооружения ПЭС. В конце 2004 года на станции был установлен новый ортогональный гидроагрегат мощностью 0,2 МВт с диаметром рабочего колеса 2,5 м, изготовленный ФГУП «ПО Севмаш» (старый гидроагрегат при этом был демонтирован), станция была введена в эксплуатацию. В конце 2006 года к станции была подведена линия электропередачи напряжением 35 кВ. В ходе реформы электроэнергетики, Кислогубская ПЭС перешла в собственность ОАО «ТГК-1», однако летом 2006 года была выкуплена ОАО «ГидроОГК» (ныне ОАО «РусГидро») и поставлена на баланс его дочернего общества ОАО «Малая Мезенская ПЭС».

5 мая 2006 годана Севмаше состоялась закладка нового экспериментального блока для Кислогубской ПЭС. В ноябре 2006 года блок был спущен на воду и в начале 2007 года отбуксирован по морю на Кислогубскую ПЭС, где и был установлен напротив второго водовода станции. Испытания новой ортогональной турбины мощностью 1,5 МВт прошли успешно и подтвердили проектные параметры.

На Кислогубской приливной электростанции (ПЭС) начался эксперимент по использованию энергии ветра для производства электроэнергии. С лета 2009 года в течение года измерительные мачты будут собирать информацию о силе и направлении ветров. Осенью установят ветроэнергоустановки.

Геотермальная энергетика - направление энергетики основанное на производстве электрическойи тепловой энергии за счёт тепловой энергии, содержащейся в недрах земли, на геотермальных станциях Обычно относится к альтернативным источникам энергии, использующим возобновляемые энергетические ресурсы

В вулканических районах циркулирующая вода перегревается выше температур кипения на относительно небольших глубинах и по трещинам поднимается к поверхности иногда проявляя себя в виде гейзеров. Доступ к подземным тёплым водам возможен при помощи глубинного бурения скважин Более чем такие паротермы распространены сухие высокотемпературные породы, энергия которых доступна при помощи закачки и последующего отбора из них перегретой воды. Высокие горизонты пород с температурой менее 100 °C распространены и на множестве геологически малоактивных территорий, потому наиболее перспективным считается использование геотерм в качестве источника тепла.

Хозяйственное применение геотермальных источников распространено в Исландии и Новой Зеландии, Италии и Франции, Литве, Мексике, Никарагуа, Коста-Рике, Филиппинах, Индонезии, Китае, Японии, Кении.

Все российские геотермальные электростанции расположены на Камчатке и Курилах, суммарный электропотенциал пароводных терм одной Камчатки оценивается в 1 ГВт рабочей электрической мощности. Российский потенциал реализован только в размере не многим более 80 МВт установленной мощности (2009) и около 450 млн. кВт·ч годовой выработки (2009):

  1. Мутновское месторождение:
  1. Верхне-Мутновская ГеоЭС установленной мощностью 12 МВт·э (2007) и выработкой 52,9 млн кВт·ч/год (2007) (81,4 в 2004),
  2. Мутновская ГеоЭС установленной мощностью 50 МВт·э (2007) и выработкой 360,7 млн кВт·ч/год (2007) (на 2006 год ведётся строительство, увеличивающее мощность до 80 МВт·э и выработку до 577 млн кВт·ч)
  1. Паужетское месторождение возле вулканов Кошелева и Камбального - Паужетская ГеоТЭС мощностью 14,5 МВт·э (2004) и выработкой 59,5 млн кВт·ч (на 2006 год проводится реконструкция с увеличением мощности до 18 МВт·э).
  2. Месторождение на острове Итуруп (Курилы): Океанская ГеоТЭС установленой мощностью 2,5 МВт·э (2009). Существует проект мощностью 34,5 МВт и годовой выработкой 107 млн кВт·ч.
  3. Кунаширское месторождение (Курилы): Менделеевская ГеоТЭС мощностью 3,6 МВт·э (2009).

В Ставропольском крае на Каясулинском месторождении начато и приостановлено строительство дорогостоящей опытной Ставропольской ГеоТЭС мощностью 3 МВт.

Приложение 3 Презентация


Факторы размещения предприятий электроэнергетики, ведущие факторы: сырьевой и потребительский

ТЭК – ведущий фактор потребительский

КЭС (конденсационные) – ориентированы на источники сырья и потребителя

АЭС – на потребителя (уран – дешевое сырье)

ГЭС – ориентация на крупные реки (Волга, Енисей)

Геотермальные ЭС – на сырьё

Гелио ЭС – солнечная энергия

Ветровые ЭС – наличие ветра

Принципы развития электроэнергетики в России:

Концентрация производства электроэнергии путём строительства крупных ЭС использующих дешёвое топливо и гидра энергоресурсы

Комбинированное производство эл. Энергиии тепла.

Широкое освоение гидро энергоресурсов с учётом комплексного решения задач.

Развитие атомной энергетики.

Учёт экологических требований при создании объектов электроэнергетики

Создание энергосистем формирующих единую высоковольтную сеть страны.

Цели создания эн. системы:

Перераспределение нагрузки, обеспечение экономического режима использования эл. Энергии. Эн. система – это взаимообусловленное в пределах определенной территории сочетание ЭС разных типов работающих на общую нагрузку.

В России 70 районов эн. Систем, они образуют районные энергосистемы (Центральная, Уральская, Сибирская)

Тепловые электростанции (ТЭС). Основной тип электростанций в России - тепловые, работающие на органическом топливе (уголь, мазут, газ, сланцы, торф). Среди них главную роль играют мощные (более 2 млн кВт) ГРЭС - государственные районные электростанции, обеспечивающие потребности экономического района, работающие в энергосистемах.

На размещение тепловых электростанция оказывает основное влияние топливный и потребительский факторы. Наиболее мощные ТЭС расположены, как правило, в местах добычи топлива. Тепловые электростанции, использующие местные виды топлива (торф, сланцы, низкокалорийные и многозольные угли), ориентируются на потребителя и одновременно находятся у источников топливных ресурсов. Потребительскую ориентацию имеют электростанции, использующие высококалорийное топливо, которое экономически выгодно транспортировать. Что же касается тепловых электростанций, работающих на мазуте, то они располагаются преимущественно в центрах нефтеперерабатывающей промышленности.

Крупными тепловыми электростанциями являются ГРЭС на углях Канско-Ачинского бассейна, Березовская ГРЭС-1 и ГРЭС-2. Сургутская ГРЭС-2, Уренгойская ГРЭС (работает на газе).

На базе Канско-Ачинского бассейна создается мощный территориально-производственный комплекс. Проект ТПК предполагал создание на территории около 10 тыс. км 2 вокруг Красноярска 10 уникальных сверхмощных ГРЭС по 6,4 млн кВт. В настоящее время число запланированных ГРЭС уменьшено пока до 8 (по экологическим соображениям - выбросы в атмосферу, скопления золы в огромных количествах).

Гидравлические электростанции (ГЭС). На втором месте по количеству вырабатываемой электроэнергии находится ГЭС (в 1991 г. - 16,5%). Гидроэлектростанции являются весьма эффективным источником энергии, поскольку используют возобновимые ресурсы, обладают простотой управления (количество персонала на ГЭС в 15-20 раз меньше, чем на ГРЭС) и имеют высокий КПД (более 80%). В результате производимая на ГЭС энергия самая дешевая.

Огромное достоинство ГЭС - высокая маневренность, т. е. возможность практически мгновенного автоматического запуска и отключения любого требуемого количества агрегатов. Это позволяет использовать мощные ГЭС либо в качестве максимально маневренных "пиковых" электростанций, обеспечивающих устойчивую работу крупных энергосистем, либо в период суточных пиков нагрузки электросистемы, когда имеющихся в наличии мощностей ТЭС не хватает. Естественно, это под силу только мощным ГЭС.

Но строительство ГЭС требует больших сроков и больших удельных капиталовложений, ведет к потерям равнинных земель, наносит ущерб рыбному хозяйству. Доля участия ГЭС в выработке электроэнергии существенно меньше их доли в установленной мощности, что объясняется тем, что их полная мощность реализуется лишь в короткий период времени, причем только в многоводные годы. Поэтому несмотря на обеспеченность России гидроэнергетическими ресурсами гидроэнергетика не может служит основой выработки электроэнергии в стране.

Наиболее мощные ГЭС построены в Сибири, где осваиваются гидроресурсы наиболее эффективно: удельные капиталовложения в 2-3 раза ниже и себестоимость электроэнергии в 4-5 раз меньше, чем в европейской части страны.

Для гидростроительства в нашей стране было характерно сооружение на реках каскадов гидроэлектростанций. Каскад - это группа ГЭС, расположенных ступенями по течению водного потока с целью последовательного использования его энергии. При этом помимо получения электроэнергии решаются проблемы снабжения населения и производства водой, устранения паводков, улучшения транспортных условий. К сожалению, создание каскадов в стране привело к крайне негативным последствиям: потере ценных сельскохозяйственных земель, особенно пойменных, нарушению экологического равновесия.

ГЭС можно разделить на две основные группы; ГЭС на крупных равнинных реках и ГЭС на горных реках. В нашей стране большая часть ГЭС сооружалась на равнинных реках. Равнинные водохранилища обычно велики по площади и изменяют природные условия на значительных территориях. Ухудшается санитарное состояние водоемов. Нечистоты, которые раньше выносились реками, накапливаются в водохранилищах, приходится применять специальные меры для промывки русел рек и водохранилищ. Сооружение ГЭС на равнинных реках менее рентабельно, чем на горных. Но иногда для создания нормального судоходства и орошения это необходимо.

Самые крупные ГЭС в стране входят в состав Ангаро-Енисейского каскада: Саяно-Шушенская, Красноярская на Енисее, Иркутская, Братская, Усть-Илимская на Ангаре, строится Богучанская ГЭС (4 млн кВт).

В европейской части страны создан крупный каскад ГЭС на Волге: Иваньковская, Угличская, Рыбинская, Горьковская, Чебоксарская, Волжская им. В.И. Ленина, Саратовская, Волжская.

Сейчас в России действуют 9 АЭС общей мощностью 20,2 млн кВт. Еще 14 АЭС и ACT (атомная станция теплоснабжения) общей мощностью 17,2 млн кВт находятся в стадии проектирования, строительства или временно законсервированы.

В настоящее время введена практика международной экспертизы проектов и действующих АЭС. В результате проведенной экспертизы были выведены из эксплуатации 2 блока Воронежской АС теплоснабжения, планируется вывод Белоярской АЭС, остановлен первый энергоблок Нововоронежской АЭС, законсервирована практически готовая Ростовская АЭС, пересматривается еще раз ряд проектов. Было установлено, что места расположения АЭС в ряде случаев выбраны неудачно, а качество их сооружения и оборудования не всегда отвечало нормативным требованиям.

Были пересмотрены принципы размещения АЭС. В первую очередь учитывается: потребность района в электроэнергии, природные условия (в частности, достаточное количество воды), плотность населения, возможность обеспечения защиты людей от недопустимого радиационного воздействия при тех или иных аварийных ситуациях.

При этом принимается во внимание вероятность возникновения на предполагаемой площадке землетрясений, наводнений, наличие близких грунтовых вод. АЭС должны размещаться не ближе 25 км от городов с численностью более 100 тыс. жителей, для ACT - не ближе 5 км. Ограничивается суммарная мощность электростанции: АЭС - 8 млн кВт, ACT - 2 млн кВт.

Новым в атомной энергетике является создание АТЭЦ и ACT. На АТЭЦ, как и на обычной ТЭЦ, производится и электрическая, и тепловая энергия, а на ACT (атомных станциях теплоснабжения) - только тепловая. Строятся Воронежская и Нижегородская ACT. АТЭЦ действует в поселке Билибино на Чукотке. На отопительные нужды выдают низкопотенциальное тепло также Ленинградская и Белоярская АЭС. В Нижнем Новгороде решение о создании ACT вызвало резкие протесты населения, поэтому была проведена экспертиза специалистами МАГАТЭ, давшими заключение о высоком качестве проекта. Преимущества АЭС сводятся к следующему: можно строить в любом районе независимо от его энергетических ресурсов; атомное топливо отличается необыкновенно большим содержанием энергии (в 1 кг основного ядерного топлива - урана - содержится энергии столько же, сколько в 25 000 т угля: АЭС не дают выбросов в атмосферу в условиях безаварийной работы (в отличие от ТЭС), не поглощают кислород из воздуха.

Работа АЭС сопровождается рядом негативных последствий:

1. Существующие трудности в использовании атомной энергии - захоронение радиоактивных отходов. Для вывоза со станций сооружаются контейнеры с мощной защитой и системой охлаждения. Захоронение производится в земле на больших глубинах в геологически стабильных пластах.

2. Катастрофические последствия аварий на наших АЭС - вследствие несовершенной системы защиты.

Преимущества и недостатки разных типов электростанций

Типы эл/ст.

Преимущества

Недостатки

1.ПТЭС:

1.1.КЭС

    Мощность 1 000 – 3 600 МВт.

    Производят только электроэнергию.

    При горении топлива потребляется большое количество кислорода.

    Выброс значительного количества продуктов сгорания: летучая зола, газообразные окислы серы, азота.

    Сброс воды из конденсаторов турбин, промышленные стоки.

    Для захоронения больших масс золы требуется много места.

    КПИТ 40%.

1.2.ТЭЦ

    Производят не только электроэнергию, но и являются источником тепловой энергии (в виде пара и горячей воды).

    КПИТ 60 – 70%.

    Малая мощность.

    Подача горячей воды технически возможна на расстояние до 30 км, пара – на 5 – 7 км.

    Размещаются у потребителей.

    Работают в постоянном режиме.

    Неблагоприятно влияют на окружающую среду.

2.ГТЭС

    Генерируют электрическую и тепловую энергии.

    Надёжные.

    Небольшой срок строительства.

    Быстрая окупаемость.

    Достаточная экологичность.

    Могут работать полностью в автоматическом режиме.

    Минимальное количество персонала.

    Очень быстро запускаются.

    Небольшая мощность.

    КПИТ 30 – 40%.

3.АЭС

    Небольшой объём используемого топлива и возможность его повторного использования после переработки.

    Высокая мощность: 1 000 – 1 600 МВт на энергоблок.

    Относительно низкая себестоимость энергии, особенно тепловой.

    Возможность размещения в регионах, расположенных вдали от крупных водноэнергетических ресурсов, крупных месторождений; в местах, где ограничены возможности для использования солнечной или ветряной электроэнергетики.

    Хотя в атмосферу и выбрасывается некоторое количество ионизированного газа, однако ТЭС вместе с дымом выводит ещё бо́льшее количество радиационных выбросов, из-за естественного содержания радиоактивных элементов в каменном угле.

    Облученное топливо опасно: требует сложных, дорогих, длительных мер переработки и хранения.

    Нежелателен режим работы с переменной мощностью.

    Крупные аварии весьма маловероятны, однако последствия крайне тяжелы.

    Большие капиталовложения.

    Процедуры ликвидации и особо длительное наблюдение отходов по времени заметно больше, чем период самой эксплуатации АЭС.

4.ГЭС

    Себестоимость электроэнергии более чем в 2 раза ниже, чем на ТЭС.

    Генераторы достаточно быстро включаются и выключаются в зависимости от потребления энергии.

    Значительно меньшее воздействие на воздушную среду, чем другими видами электростанций.

    Менее трудоёмкие в эксплуатации, чем ТЭС.

    Длительный срок службы.

    Строительство обычно более капиталоёмкое.

    Затопляются плодородные земли – водохранилища часто занимают значительные территории.

    Плотины изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам.

    Часто удалены от потребителей.

5.ПЭС

    Экологичны.

    Низкая себестоимость производства энергии.

    Используется возобновляемый источник энергии.

    Работа тормозит вращение Земли, что может привести к негативным экологическим последствиям.

    Высокая стоимость строительства.

    Изменяющаяся в течение суток мощность.

6.ГАЭС

    Генерирующие источники электроэнергии.

    Источники оказания системных услуг, способствующих оптимизации суточного графика нагрузок и повышению надёжности и качества электроснабжения.

    Формально является убыточной.

7.ВЭС

    Используется возобновляемый источник энергии.

    Дешёвый источник энергии.

    Действие ветра непостоянно.

    Капиталоёмкое и сложное строительство.

    Шумны.

    Опасны для перелётов птиц.

8.СЭС

    Используется возобновляемый источник энергии.

    Слишком дорогие.

    Быстрое загрязнение зеркал и трудности с их чисткой.

    Зависят от погодных условий.

    Малая мощность – 3 – 46 МВт.

9.ГеоТЭС

    Используется возобновляемый источник энергии.

    Малая мощность – 12 МВт.

Электрические станции играют очень важную роль в современном мире. Характеристика электростанций различного типа позволяет определить их конкретное предназначение и предельные возможности.

Мощность – ключевой параметр бытовой электростанции

Главным техническим параметром любой энергетической установки является мощность . Производители бытовых электростанций обозначают предельный уровень мощности, который достигается только в непродолжительные временные промежутки. Для подсчета реального уровня мощности необходимо дополнительно учитывать коэффициент мощности. Реальная производительность, как правило, меньше максимальной и определяется в киловаттах.

Бытовые электростанции разных типов обладают следующей мощностью:

  • Бензиновые: 15-20 кВт
  • Дизельные: до 3000 кВт

Генераторы с различной отдачей отличаются друг от друга по габаритам, весу, стоимости и прочим параметрам. При выборе бытовой электростанции следует рассматривать все характеристики в совокупности, включая коэффициент полезного действия, указываемый в предоставляемой документации на агрегат.

Характеристика промышленных электростанций

Промышленными называются энергоустановки, включенные в состав производственных предприятий. Их основное предназначение заключается в энергоснабжении соответствующих предприятий и прилегающих территорий. К принципиальным особенностям промышленных станций относятся:



По виду производимой энергии промышленные станции подразделяются на следующие группы:

  • Вырабатывающие только электрическую энергию
  • Снабжающие потребителей электро- и тепловой энергией
  • Дополнительно снабжающие потребителей сжатым воздухом

В зависимости от типа установленного двигателя, выделяют электростанции с паровыми или газовыми турбинами, двигателями внутреннего сгорания, локомобилями.

Помимо мощности и типа станции, существует ряд других параметров и характеристик. От фазности станции зависит возможность подключения отдельных приборов-потребителей. Существуют однофазные и трехфазные автономные энергоустановки. В трехфазной установке мощность распределяется равномерно между всеми фазами.

Не менее важной характеристикой является частота вырабатываемого установкой тока. В соответствии со стандартами этот показатель составляет 50 Гц в России. В других странах, включая Японию, Канаду и Соединенные Штаты, данный параметр может достигать 60 Гц. Максимальная сила вырабатываемого тока энергетических установок определяется в амперах. Не допускается подключать к энергоустановке нагрузку, ампераж потребления которой превышает предельную возможность передачи тока агрегатом.

Учитывая все характеристики электростанций, удастся обеспечить их максимальную производительность и стабильную работу на протяжении долгого времени. В зависимости от наличия или отсутствия конкретных технических характеристик необходимо регулировать нагрузку на станцию.

Основную часть электрической энергии вырабатывают: 1) тепловые станции (ТЭС), которые подразделяются на конденсационные (КЭС) и теплофикаци-онные (ТЭЦ); 2) атомные электрические станции (АЭС); 3) гидравлические электрические станции (ГЭС) и гидроаккумулирующие станции (ГАЭС).

Незначительную часть энергии вырабатывают дизельные электростанции

(ДЭС), а такжеТЭС с газотурбинными (ГТУ) и парогазовыми установками

Мощность электрических станций различного типа зависитот наличия и

размещения на территории страны теплоэнергетических и гидроэнергетич-еских ресурсов,их технико-экономических характеристик, включая затраты

на транспорт топлива, и от технико-экономических показателей станций.

ТЭС. Тепловые станции используют органическое топливо. КЭС-(предназн-ачена для выработки только ЭЭ) – строятся у источника энергии; ТЭЦ –(пр-едназначена для выработки тепловой и некоторого количества ЭЭ) – строят-ся в городах, на крупных предприятиях.

В отечественн-ых энергосисте-мах на долю КЭС приходится приблизительно три четверти всей вырабатываемой энергии. Мощность отдельных электростанций этого типа достигла 6000 МВт и имеет тенденцию к дальнейшему увеличению до 8000 МВт. КПД КЭС 0,3-0,4.

Они отличаются от КЭС использован-ием тепла «отработ-авшего» в турбинах пара для нужд прои-зводства, отопления, вентиляции и горяч-его водоснабжения. При такой комбини-рованной выработке электрической и те-пловой энергии дос-тигается значитель-ная экономия топли-ва сравнительно с раздельным энерго-снабжением. Поэтому станции типа ТЭЦ получили широкое распростр-анение в районах и городах с большим потреблением тепла.

При средней плотн-ости тепловой нагр-узки мощность ТЭЦ обычно не превышает 300-500 МВт. Лишь в самых бол-ьших городах (Москве, Ленинграде) с большой плотностью нагрузки целес-ообразны ТЭЦ мощностью до 1000-1500 МВт. КПД ТЭЦ 0,6-0,7.

Достоинства ТЭС: - могут использовать природные ресурсы с большой зол-ьностью; - выработка ЭЭ на ТЭС не зависит от внешних климатических усл-овий; - возможность получения ЭЭ непосредст-но. у места добычи ресурсов.

Недостатки ТЭС: -загрязнение окружающей среды; -необходимость наличия подвижного транспорта; -станции очень чувствительны к суточному графи-ку нагрузки.

АЭС. Атомные электрические станции – это тепловые станции, использую-щие энергию ядерных реакций. В качестве ядерного горючего используют обычно изотоп урана U-235, содержание которого в природном уране соста-вляет 0,714%. Основная масса урана – изотоп U-238 (99,28 % всей массы) при захвате нейтронов превращается во вторичное горючее - плутоний Рu-239. На АЭС в России используют ядерные реакторы следующих основных типов: РБМК (реактор большой мощности, канальный) – реактор на теплов-ых нейтронах, водо-графитовый; ВВЭР (водо-водяной энергетический реак-тор) - реактор на тепловых нейтронах, корпусного типа; БН (быстрые нейтр-оны) – реактор на быстрых нейтронах с жидкометаллическим натриевым те-плононосителем.



Технологическая схемаАЭС зависит от типа реактора, вида теплоносителя

и замедлителя,а также от ряда других факторов. Схема может быть одноко-нтурной (рис. 1.5, а), двухконтурной (рис. 1.5,б) и трехконтурной (рис.1.5.в).

Одноконтурная схема с кипящим реактором и графитовым замедлителем ти-па РБМК-1000 применена на ЛенинградскойАЭС. Одноконтурная сх. отно-сительно проста, но радиоактивность распространяется на все элементы бл-ока, что усложняет биологическую защиту. Двухконтурную схему применя-ют в водо-водяном реакторе типаВВЭР. Второй контур нерадноактивен. Тр-ех контурную схему применяют наАЭС с реакторами на быстрых нейтрон-ах с натриевым теплоносителем типа БН-600. Чтобы исключить контакт ра-диоактивного натрия с водой, сооружают второй контур с нерадиоактивным натрием. Таким образом сх. получается трех контурной.

Единичная мощность ядерных энергоблоков достигла 1500 МВт. В насто-ящее время считается, что единичная мощность энергоблокаАЭС ограничи-вается не столько техническими соображениями, сколько условиями безопа-сности при авариях с реакторами.

Достоинства АЭС: - можно строить в любом географическом месте; - малый расход топлива; - не загрязняется окружающая среда.

Недостатки АЭС: - чувствительны к колебаниям нагрузки; - требуется большое количество воды.

ГЭС. При сооружении ГЭС обычно преследуют цель: выработки ЭЭ, улуч-шения условий судоходства по реке и орошение земель. ГЭС обычно имеют водохранилища, позволяющие аккумулировать воду и регулировать ее расх-од и, следовательно рабочую мощность станции так, чтобы обеспечить наи-выгоднейший режим для энергосистемы в целом.

Продолжительность использования установленной мощности ГЭС, как правило, меньше, чем ТЭС. Она составляет 1500-3000 ч для пиковых станц-ий и до 5000-6000 ч для базовых. Удельная стоимость ГЭС выше удельной стоимости ТЭС той же мощности. Время сооружения также больше, а себес-тоимость ЭЭ, вырабатываемой ГЭС значительно ниже т.к в неё не входит стоимость топлива. КПД ГЭС 0.9…0.95.

ГАЭС. Гидроаккумулирующие электростанции. Назначение заключается в выравнивании суточного графака нагрузки электрической системы и повы-шении экономичности ТЭС и АЭС. В часы минимальной нагрузки системы агрегаты ГАЭС работают в насосном режиме, перекачивая воду из нижнего водохранилища в верхнее и увеличивая тем самым нагрузку ТЭС и АЭС. В часы максимальной нагрузки системы они работают в турбинном режиме, срабатывая воду из верхнего водохранилища и разгружая тем самым ТЭС и АЭС от кратковременной пиковой нагрузки. КПД ГАЭС - 0.7…0.75.

Достоинства ГЭС: При строительстве ГЭС решается ряд задач: - орошение; - обводнения; - расширение сферы судоходства; - низкая себестоимость ЭЭ; - пиковые станции (т.е быстро запускаются)

Недостатки ГЭС: - большие капиталовложения; - затапливаются большие площади; - оказывается вредное влияние на рыборазводное хозяйство.

Особое место занимают электростанции, работающие на возобновляемых источниках энергии: солнечные (СЭС); ветровые (ВЭС); геотермальные

(ГЕОТЭС) и приливные электростанции (ПЭС). Однако суммарная мощность этих станций незначительна.

Публикации по теме