Комбинаторика: формула перестановки, размещения. Основные формулы комбинаторики

Комбинаторикой называется раздел математики, изучающий вопрос о том, сколько комбинаций определенного типа можно составить из данных предметов (элементов).

Правило умножения (основная формула комбинаторики)

Общее число способов, которыми можно выбрать по одному элементу из каждой группы и расставить их в определенном порядке (то есть получить упорядоченную совокупность ), равно:

Пример 1

Монету подбросили 3 раза. Сколько различных результатов бросаний можно ожидать?

Решение

Первая монета имеет альтернативы – либо орел, либо решка. Для второй монеты также есть альтернативы и т.д., т.е. .

Искомое количество способов:

Правило сложения

Если любые две группы и не имеют общих элементов, то выбор одного элемента или из , или из , …или из можно осуществить способами.

Пример 2

На полке 30 книг, из них 20 математических, 6 технических и 4 экономических. Сколько существует способов выбора одной математической или одной экономической книги.

Решение

Математическая книга может быть выбрана способами, экономическая - способами.

По правилу суммы существует способа выбора математической или экономической книги.

Размещения и перестановки

Размещения – это упорядоченные совокупности элементов, отличающиеся друг от друга либо составом, либо порядком элементов.

Размещения без повторений , когда отобранный элемент перед отбором следующего не возвращается в генеральную совокупность. Такой выбор называется последовательным выбором без возвращения, а его результат – размещением без повторений из элементов по .

Число различных способов, которыми можно произвести последовательный выбор без возвращения элементов из генеральной совокупности объема , равно:

Пример 3

Расписание дня состоит из 5 различных уроков. Определите число вариантов расписания при выборе из 11 дисциплин.

Решение

Каждый вариант расписания представляет набор 5 дисциплин из 11, отличающихся от других вариантов как составом, так и порядком следования. поэтому:

Перестановки – это упорядоченные совокупности, отличающиеся друг от друга только порядком элементов. Число всех перестановок множества из элементов равно

Пример 4

Сколькими способами можно рассадить 4 человек за одним столом?

Решение

Каждый вариант рассадки отличается только порядком участников, то есть является перестановкой из 4 элементов:

Размещения с повторениями , когда отобранный элемент перед отбором следующего возвращается в генеральную совокупность. Такой выбор называется последовательным выбором с возвращением, а его результат - размещением с повторениями из элементов по .

Общее число различных способов, которыми можно произвести выбор с возвращением элементов из генеральной совокупности объема , равно

Пример 5

Лифт останавливается на 7 этажах. Сколькими способами могут выйти на этих этажах 6 пассажиров, находящихся в кабине лифта?

Решение

Каждый из способов распределения пассажиров по этажам представляет собой комбинацию 6 пассажиров по 7 этажам, отличающуюся от других комбинаций как составом, так и их порядком. Так как одном этаже может выйти как один, так и несколько пассажиров, то одни и те же пассажиры могут повторяться. Поэтому число таких комбинаций равно числу размещений с повторениями из 7 элементов по 6:

Сочетания

Сочетаниями из n элементов по k называются неупорядоченные совокупности, отличающиеся друг от друга хотя бы одним элементом.

Пусть из генеральной совокупности берется сразу несколько элементов (либо элементы берут последовательно, но порядок их появления не учитывается). В результате такого одновременного неупорядоченного выбора элементов из генеральной совокупности объема получаются комбинации, которые называются сочетаниями без повторений из элементов по .

Число сочетаний из элементов по равно:

Пример 6

В ящике 9 яблок. Сколькими способами можно выбрать 3 яблока из ящика?

Решение

Каждый вариант выбора состоит из 3 яблок и отличается от других только составом, то есть представляет собой сочетания без повторений из 9 элементов:

Количество способов, которыми можно выбрать 3 яблока из 9:

Пусть из генеральной совокупности объема выбирается элементов, один за другим, причем каждый отобранный элемент перед отбором следующего возвращается в генеральную совокупность. При этом ведется запись, какие элементы появились и сколько раз, однако порядок их появления не учитывается. Получившиеся совокупности называются сочетаниями с повторениями из элементов по .

Число сочетаний с повторениями из элементов по :

Пример 7

На почте продают открытки 3 видов. Сколькими способами можно купить 6 открыток?

Это задача на отыскание числа сочетаний с повторениями из 3 по 6:

Разбиение множества на группы

Пусть множество из различных элементов разбивается на групп так, то в первую группу попадают элементов, во вторую - элементов, в -ю группу - элементов, причем . Такую ситуацию называют разбиением множества на группы.

Число разбиений на групп, когда в первую попадают элементов, во вторую - элементов, в k-ю группу - элементов, равно:

Пример 8

Группу из 16 человек требуется разбить на три подгруппы, в первой из которых должно быть 5 человек, во второй – 7 человек, в третьей – 4 человека. Сколькими способами это можно сделать?

Решение

Средняя стоимость решения контрольной работы 700 - 1200 рублей (но не менее 300 руб. за весь заказ). На цену сильно влияет срочность решения (от суток до нескольких часов). Стоимость онлайн-помощи на экзамене/зачете - от 1000 руб. за решение билета.

Заявку можно оставить прямо в чате, предварительно скинув условие задач и сообщив необходимые вам сроки решения. Время ответа - несколько минут.

Чтобы в материале было легче ориентироваться, добавлю содержание данной темы:

Введение. Множества и выборки.

В этой теме рассмотрим основные понятия комбинаторики: перестановки, сочетания и размещения. Выясним их суть и формулы, по которым можно найти их количество.

Для работы нам понадобятся кое-какие вспомогательные сведения. Начнём с такого фундаментального математического понятия как множество. Подробно понятие множества было раскрыто в теме "Понятие множества. Способы задания множеств" .

Очень краткий рассказ про множества : показать\скрыть

Если вкратце: множеством именуют некую совокупность объектов. Записывают множества в фигурных скобках. Порядок записи элементов роли не играет; повторения элементов не допускаются. Например, множество цифр числа 11115555999 будет таким: $\{1,5,9 \}$. Множество согласных букв в слове "тигрёнок" таково: $\{т, г, р, н, к\}$. Запись $5\in A$ означает, что элемент 5 принадлежит множеству $A=\{1,5,9 \}$. Количество элементов в конечном множестве называют мощностью этого множества и обозначают $|A|$. Например, для множества $A=\{1,5,9 \}$, содержащего 3 элемента, имеем: $|A|=3$.

Рассмотрим некое непустое конечное множество $U$, мощность которого равна $n$, $|U|=n$ (т.е. в множестве $U$ имеется $n$ элементов). Введём такое понятие, как выборка (некоторые авторы именуют её кортежем). Под выборкой объема $k$ из $n$ элементов (сокращённо $(n,k)$-выборкой) будем понимать набор элементов $(a_1, a_2,\ldots, a_k)$, где $a_i\in U$. Выборка называется упорядоченной, если в ней задан порядок следования элементов. Две упорядоченные выборки, различающиеся лишь порядком элементов, являются различными. Если порядок следования элементов выборки не является существенным, то выборку именуют неупорядоченной.

Заметьте, что в определении выборки ничего не сказано про повторения элементов. В отличие от элементов множеств, элементы выборки могут повторяться.

Для примера рассмотрим множество $U=\{a,b,c,d,e\}$. Множество $U$ содержит 5 элементов, т.е. $|U|=5$. Выборка без повторений может быть такой: $(a,b,c)$. Данная выборка содержит 3 элемента, т.е. объём этой выборки равен 3. Иными словами, это $(5,3)$-выборка.

Выборка с повторениями может быть такой: $(a,a,a,a,a,c,c,d)$. Она содержит 8 элементов, т.е. объём её равен 8. Иными словами, это $(5,8)$-выборка.

Рассмотрим ещё две $(5,3)$-выборки: $(a,b,b)$ и $(b,a,b)$. Если мы полагаем наши выборки неупорядоченными, то выборка $(a,b,b)$ равна выборке $(b,a,b)$, т.е. $(a,b,b)=(b,a,b)$. Если мы полагаем наши выборки упорядоченными, то $(a,b,b)\neq(b,a,b)$.

Рассмотрим ещё один пример, немного менее абстрактный:) Предположим, в корзине лежат шесть конфет, причём все они различны. Если первой конфете поставить в соответствие цифру 1, второй конфете - цифру 2 и так далее, то с конфетами в корзине можно сопоставить такое множество: $U=\{1,2,3,4,5,6\}$. Представьте, что мы наугад запускаем руку в корзинку с целью вытащить три конфеты. Вытащенные конфеты - это и есть выборка. Так как мы вытаскиваем 3 конфеты из 6, то получаем (6,3)-выборку. Порядок расположения конфет в ладони совершенно несущественен, поэтому эта выборка является неупорядоченной. Ну, и так как все конфеты различны, то выборка без повторений. Итак, в данной ситуации говорим о неупорядоченной (6,3)-выборке без повторений.

Теперь подойдём с иной стороны. Представим себе, что мы находимся на фабрике по производству конфет, и на этой фабрике производятся конфеты четырёх сортов. Множество $U$ в этой ситуации таково: $U=\{1,2,3,4 \}$ (каждая цифра отвечает за свой сорт конфет). Теперь вообразим, что все конфеты ссыпаются в единый жёлоб, около которого мы и стоим. И, подставив ладони, из этого потока отбираем 20 конфет. Конфеты в горсти – это и есть выборка. Играет ли роль порядок расположения конфет в горсти? Естественно, нет, поэтому выборка неупорядоченная. Всего 4 сорта конфет, а мы отбираем двадцать штук из общего потока - повторения сортов неизбежны. При этом выборки могут быть самыми различными: у нас даже могут оказаться все конфеты одного сорта. Следовательно, в этой ситуации мы имеем дело с неупорядоченной (4,20)-выборкой с повторениями.

Рассмотрим ещё пару примеров. Пусть на кубиках написаны различные 7 букв: к, о, н, ф, е, т, а. Эти буквы образуют множество $U=\{к,о,н,ф,е,т,а\}$. Допустим, из данных кубиков мы хотим составить "слова" из 5 букв. Буквы этих слов (к примеру, «конфе», «тенко» и так далее) образуют (7,5)-выборки: $(к,о,н,ф,е)$, $(т,е,н,к,о)$ и т.д. Очевидно, что порядок следования букв в такой выборке важен. Например, слова «нокфт» и «кфтон» различны (хотя состоят из одних и тех же букв), ибо в них не совпадает порядок букв. Повторений букв в таких «словах» нет, ибо в наличии только семь кубиков. Итак, набор букв каждого слова представляет собой упорядоченную (7,5)-выборку без повторений.

Еще один пример: мы составляем всевозможные восьмизначные числа из четырёх цифр 1, 5, 7, 8. Например, 11111111, 15518877, 88881111 и так далее. Множество $U$ таково: $U=\{1,5,7,8\}$. Цифры каждого составленного числа образуют (4,8)-выборку. Порядок следования цифр в числе важен, т.е. выборка упорядоченная. Повторения допускаются, поэтому здесь мы имеем дело с упорядоченной (4,8)-выборкой с повторениями.

Размещения без повторений из $n$ элементов по $k$

Размещение без повторений из $n$ элементов по $k$ - упорядоченная $(n,k)$-выборка без повторений.

Так как элементы в рассматриваемой выборке повторяться не могут, то мы не можем отобрать в выборку больше элементов, чем есть в исходном множестве. Следовательно, для таких выборок верно неравенство: $n≥ k$. Количество размещений без повторений из $n$ элементов по $k$ определяется следующей формулой:

\begin{equation}A_{n}^{k}=\frac{n!}{(n-k)!} \end{equation}

Что обозначает знак "!"? : показать\скрыть

Запись "n!" (читается "эн факториал") обозначает произведение всех чисел от 1 до n, т.е.

$$ n!=1\cdot2\cdot 3\cdot \ldots\cdot n $$

По определению полагается, что $0!=1!=1$. Для примера найдём 5!:

$$ 5!=1\cdot 2\cdot 3\cdot 4\cdot 5=120. $$

Пример №1

Алфавит состоит из множества символов $E=\{+,*,0,1,f\}$. Определим количество таких трёхсимвольных слов в этом алфавите, которые не содержат повторяющихся букв.

Под трёхсимвольными словами будем понимать выражения вида "+*0" или "0f1". В множестве $E$ пять элементов, поэтому буквы трехсимвольных слов образуют (5,3)-выборки. Первый вопрос: эти выборки упорядочены или нет? Слова, которые отличаются лишь порядком букв, полагаются различными, поэтому порядок элементов в выборке важен. Значит, выборка является упорядоченной. Второй вопрос: допускаются повторения или нет? Ответ на этот вопрос даёт условие: слова не должны содержать повторяющихся букв. Подводим итоги: буквы каждого слова, удовлетворяющего условию задачи, образуют упорядоченную (5,3)-выборку без повторений. Иными словами, буквы каждого слова образуют размещение без повторений из 5 элементов по 3. Вот примеры таких размещений:

$$ (+,*,f), \; (*,+,f), \; (1,+,0) $$

Нас же интересует общее количество этих размещений. Согласно формуле (1) количество размещений без повторений из 5 элементов по 3 будет таким:

$$ A_{5}^{3}=\frac{5!}{(5-3)!}=\frac{5!}{2!}=60. $$

Т.е. можно составить 60 трёхсимвольных слов, буквы которых не будут повторяться.

Ответ : 60.

Размещения с повторениями из $n$ элементов по $k$

Размещение с повторениями из $n$ элементов по $k$ - упорядоченная $(n,k)$-выборка с повторениями.

Количество размещений с повторениями из $n$ элементов по $k$ определяется следующей формулой:

\begin{equation}\bar{A}_{n}^{k}=n^k \end{equation}

Пример №2

Сколько пятизначных чисел можно составить из множества цифр $\{5,7,2\}$?

Из данного набора цифр можно составить пятизначные числа 55555, 75222 и так далее. Цифры каждого такого числа образуют (3,5)-выборку: $(5,5,5,5,5)$, $(7,5,2,2,2)$. Зададимся вопросом: что это за выборки? Во-первых, цифры в числах могут повторяться, поэтому мы имеем дело с выборками с повторениями. Во-вторых, порядок расположения цифр в числе важен. Например, 27755 и 77255 - разные числа. Следовательно, мы имеем дело с упорядоченными (3,5)-выборками с повторениями. Общее количество таких выборок (т.е. общее количество искомых пятизначных чисел) найдём с помощью формулы (2):

$$ \bar{A}_{3}^{5}=3^5=243. $$

Следовательно, из заданных цифр можно составить 243 пятизначных числа.

Ответ : 243.

Перестановки без повторений из $n$ элементов

Перестановка без повторений из $n$ элементов - упорядоченная $(n,n)$-выборка без повторений.

По сути, перестановка без повторений есть частный случай размещения без повторений, когда объём выборки равен мощности исходного множества. Количество перестановок без повторений из $n$ элементов определяется следующей формулой:

\begin{equation}P_{n}=n! \end{equation}

Эту формулу, кстати, легко получить, если учесть, что $P_n=A_{n}^{n}$. Тогда получим:

$$ P_n=A_{n}^{n}=\frac{n!}{(n-n)!}=\frac{n!}{0!}=\frac{n!}{1}=n! $$

Пример №3

В морозилке лежат пять порций мороженого от различных фирм. Сколькими способами можно выбрать порядок их съедения?

Пусть первому мороженому соответствует цифра 1, второму - цифра 2 и так далее. Мы получим множество $U=\{1,2,3,4,5\}$, которое будет представлять содержимое морозилки. Порядок съедения может быть таким: $(2,1,3,5,4)$ или таким: $(5,4,3,1,2)$. Каждый подобный набор есть (5,5)-выборка. Она будет упорядоченной и без повторений. Иными словами, каждая такая выборка есть перестановка из 5 элементов исходного множества. Согласно формуле (3) общее количество этих перестановок таково:

$$ P_5=5!=120. $$

Следовательно, существует 120 порядков выбора очередности съедения.

Ответ : 120.

Перестановки с повторениями

Перестановка с повторениями – упорядоченная $(n,k)$-выборка с повторениями, в которой элемент $a_1$ повторяется $k_1$ раз, $a_2$ повторяется $k_2$ раза так далее, до последнего элемента $a_r$, который повторяется $k_r$ раз. При этом $k_1+k_2+\ldots+k_r=k$.

Общее количество перестановок с повторениями определяется формулой:

\begin{equation}P_{k}(k_1,k_2,\ldots,k_r)=\frac{k!}{k_1!\cdot k_2!\cdot \ldots \cdot k_r!} \end{equation}

Пример №4

Слова составляются на основе алфавита $U=\{a,b,d\}$. Сколько различных слов из семи символов может быть составлено, если в этих словах буква "a" должна повторяться 2 раза; буква "b" - 1 раз, а буква "d" - 4 раза?

Вот примеры искомых слов: "aabdddd", "daddabd" и так далее. Буквы каждого слова образуют (3,7)-выборку с повторениями: $(a,a,b,d,d,d,d)$, $(d,a,d,d,a,b,d)$ и т.д. Каждая такая выборка состоит из двух элементов "a", одного элемента "b" и четырёх элементов "d". Иными словами, $k_1=2$, $k_2=1$, $k_3=4$. Общее количество повторений всех символов, естественно, равно объёму выборки, т.е. $k=k_1+k_2+k_3=7$. Подставляя эти данные в формулу (4), будем иметь:

$$ P_7(2,1,4)=\frac{7!}{2!\cdot 1!\cdot 4!}=105. $$

Следовательно, общее количество искомых слов равно 105.

Ответ : 105.

Сочетания без повторений из $n$ элементов по $k$

Сочетание без повторений из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка без повторений.

Общее количество сочетаний без повторений из $n$ элементов по $k$ определяется формулой:

\begin{equation}C_{n}^{k}=\frac{n!}{(n-k)!\cdot k!} \end{equation}

Пример №5

В корзине размещены карточки, на которых написаны целые числа от 1 до 10. Из корзины вынимают 4 карточки и суммируют числа, написанные на них. Сколько различных наборов карточек можно вытащить из корзины?

Итак, в данной задаче исходное множество таково: $U=\{1,2,3,4,5,6,7,8,9,10\}$. Из этого множества мы выбираем четыре элемента (т.е., четыре карточки из корзины). Номера вытащенных элементов образуют (10,4)-выборку. Повторения в этой выборке не допускаются, так как номера всех карточек различны. Вопрос вот в чём: порядок выбора карточек играет роль или нет? Т.е., к примеру, равны ли выборки $(1,2,7,10)$ и $(10,2,1,7)$ или не равны? Тут нужно обратиться к условию задачи. Карточки вынимаются для того, чтобы потом найти сумму элементов. А это значит, что порядок карточек не важен, так как от перемены мест слагаемых сумма не изменится. Например, выборке $(1,2,7,10)$ и выборке $(10,2,1,7)$ будет соответствовать одно и то же число $1+2+7+10=10+2+1+7=20$. Вывод: из условия задачи следует, что мы имеем дело с неупорядоченными выборками. Т.е. нам нужно найти общее количество неупорядоченных (10,4)-выборок без повторений. Иными словами, нам нужно найти количество сочетаний из 10 элементов по 4. Используем для этого формулу (5):

$$ C_{10}^{4}=\frac{10!}{(10-4)!\cdot 4!}=\frac{10!}{6!\cdot 4!}=210. $$

Следовательно, общее количество искомых наборов равно 210.

Ответ : 210.

Сочетания с повторениями из $n$ элементов по $k$

Сочетание с повторениями из $n$ элементов по $k$ – неупорядоченная $(n,k)$-выборка с повторениями.

Общее количество сочетаний с повторениями из $n$ элементов по $k$ определяется формулой:

\begin{equation}\bar{C}_{n}^{k}=\frac{(n+k-1)!}{(n-1)!\cdot k!} \end{equation}

Пример №6

Представьте себе, что мы находимся на конфетном заводе, - прямо возле конвейера, по которому движутся конфеты четырёх сортов. Мы запускаем руки в этот поток и вытаскиваем двадцать штук. Сколько всего различных "конфетных комбинаций" может оказаться в горсти?

Если принять, что первому сорту соответствует число 1, второму сорту - число 2 и так далее, то исходное множество в нашей задаче таково: $U=\{1,2,3,4\}$. Из этого множества мы выбираем 20 элементов (т.е., те самые 20 конфет с конвейера). Пригоршня конфет образует (4,20)-выборку. Естественно, повторения сортов будут. Вопрос в том, играет роль порядок расположения элементов в выборке или нет? Из условия задачи следует, что порядок расположения элементов роли не играет. Нам нет разницы, будут ли в горсти располагаться сначала 15 леденцов, а потом 4 шоколадных конфеты, или сначала 4 шоколадных конфеты, а уж потом 15 леденцов. Итак, мы имеем дело с неупорядоченной (4,20) выборкой с повторениями. Чтобы найти общее количество этих выборок используем формулу (6):

$$ \bar{C}_{4}^{20}=\frac{(4+20-1)!}{(4-1)!\cdot 20!}=\frac{23!}{3!\cdot 20!}=1771. $$

Следовательно, общее количество искомых комбинаций равно 1771.

В данной статье речь пойдет об особом разделе математики под названием комбинаторика. Формулы, правила, примеры решения задач - все это вы сможете найти здесь, прочитав статью до самого конца.

Итак, что же это за раздел? Комбинаторика занимается вопросом подсчета каких-либо объектов. Но в данном случае объектами выступают не сливы, груши или яблоки, а нечто иное. Комбинаторика помогает нам находить вероятность какого-либо события. Например, при игре в карты - какова вероятность того, что у противника есть козырная карта? Или такой пример - какова вероятность того, что из мешка с двадцатью шариками вы достанете именно белый? Именно для подобного рода задач нам и нужно знать хотя бы основы данного раздела математики.

Комбинаторные конфигурации

Рассматривая вопрос основных понятий и формул комбинаторики, мы не можем не уделить внимание комбинаторным конфигурациям. Они используются не только для формулировки, но и для решения различных Примерами таких моделей служат:

  • размещение;
  • перестановка;
  • сочетание;
  • композиция числа;
  • разбиение числа.

О первых трех мы поговорим более подробно далее, а вот композиции и разбиению мы уделим внимание в данном разделе. Когда говорят о композиции некого числа (допустим, а), то подразумевают представление числа а в виде упорядоченной суммы неких положительных чисел. А разбиение - это неупорядоченная сумма.

Разделы

Прежде чем мы перейдем непосредственно к формулам комбинаторики и рассмотрению задач, стоит обратить внимание на то, что комбинаторика, как и другие разделы математики, имеет свои подразделы. К ним относятся:

  • перечислительная;
  • структурная;
  • экстремальная;
  • теория Рамсея;
  • вероятностная;
  • топологическая;
  • инфинитарная.

В первом случае речь идет об исчисляющей комбинаторике, задачи рассматривают перечисление или подсчет разных конфигураций, которые образованы элементами множеств. На данные множества, как правило, накладываются какие-либо ограничения (различимость, неразличимость, возможность повтора и так далее). А количество этих конфигураций подсчитывается при помощи правила сложения или умножения, о которых мы поговорим немного позже. К структурной комбинаторике относятся теории графов и матроидов. Пример задачи экстремальной комбинаторики - какова наибольшая размерность графа, который удовлетворяет следующим свойствам… В четвертом пункте мы упомянули теорию Рамсея, которая изучает в случайных конфигурациях наличие регулярных структур. Вероятностная комбинаторика способна нам ответить на вопрос - какова вероятность того, что у заданного множества присутствует определенное свойство. Как нетрудно догадаться, топологическая комбинаторика применяет методы в топологии. И, наконец, седьмой пункт - инфинитарная комбинаторика изучает применение методов комбинаторики к бесконечным множествам.

Правило сложения

Среди формул комбинаторики можно найти и довольно простые, с которыми мы достаточно давно знакомы. Примером является правило суммы. Предположим, что нам даны два действия (С и Е), если они взаимоисключаемы, действие С выполнимо несколькими способами (например а), а действие Е выполнимо b-способами, то выполнить любое из них (С или Е) можно а+b способами.

В теории это понять достаточно трудно, постараемся донести всю суть на простом примере. Возьмем среднюю численность учеников одного класса - допустим, это двадцать пять. Среди них пятнадцать девочек и десять мальчиков. Ежедневно в классе назначается один дежурный. Сколько есть способов назначить дежурного по классу сегодня? Решение задачи достаточно простое, мы прибегнем к правилу сложения. В тексте задачи не сказано, что дежурными могут быть только мальчики или только девочки. Следовательно, им может оказаться любая из пятнадцати девочек или любой из десяти мальчиков. Применяя правило суммы, мы получаем достаточно простой пример, с которым без труда справится школьник начальных классов: 15 + 10. Подсчитав, получаем ответ: двадцать пять. То есть существует всего двадцать пять способов назначить на сегодня дежурного класса.

Правило умножения

К основным формулам комбинаторики относится и правило умножения. Начнем с теории. Допустим, нам необходимо выполнить несколько действий (а): первое действие выполняется с1 способами, второе - с2 способами, третье - с3 способами и так далее до последнего а-действия, выполняемого са способами. Тогда все эти действия (которых всего у нас а) могут быть выполнены N способами. Как высчитать неизвестную N? В этом нам поможет формула: N = с1 * с2 * с3 *…* са.

Опять же, в теории ничего не понятно, переходим к рассмотрению простого примера на применение правила умножения. Возьмем все тот же класс из двадцати пяти человек, в котором учится пятнадцать девочек и десять мальчиков. Только на этот раз нам необходимо выбрать двух дежурных. Ими могут быть как только мальчики или девочки, так и мальчик с девочкой. Переходим к элементарному решению задачи. Выбираем первого дежурного, как мы решили в прошлом пункте, у нас получается двадцать пять возможных вариантов. Вторым дежурным может быть любой из оставшихся человек. У нас было двадцать пять учеников, одного мы выбрали, значит вторым дежурным может быть любой из оставшихся двадцати четырех человек. Наконец, применяем правило умножения и получаем, что двоих дежурных можно избрать шестью сотнями способов. Мы данное число получили умножением двадцати пяти и двадцати четырех.

Перестановка

Сейчас мы рассмотрим еще одну формулу комбинаторики. В данном разделе статьи мы поговорим о перестановках. Рассмотреть проблему предлагаем сразу же на примере. Возьмем бильярдные шары у нас их n-ое количество. Нам нужно подсчитать: сколько есть вариантов расставить их в ряд, то есть составить упорядоченный набор.

Начнем, если у нас нет шаров, то и вариантов расстановки у нас так же ноль. А если у нас шар один, то и расстановка тоже одна (математически это можно записать следующим образом: Р1 = 1). Два шара можно расставить двумя разными способами: 1,2 и 2,1. Следовательно, Р2 = 2. Три шара можно расставить уже шестью способами (Р3=6): 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,2,1; 3,1,2. А если таких шаров не три, а десять или пятнадцать? Перечислять все возможные варианты очень долго, тогда нам на помощь приходит комбинаторика. Формула перестановки поможет нам найти ответ на интересующий нас вопрос. Pn = n *P (n-1). Если попытаться упростить формулу, то получаем: Pn = n* (n - 1) *…* 2 * 1. А это и есть произведение первых натуральных чисел. Такое число называется факториалом, а обозначается как n!

Рассмотрим задачу. Вожатый каждое утро выстраивает свой отряд в шеренгу (двадцать человек). В отряде есть три лучших друга - Костя, Саша и Леша. Какова вероятность того, что они будут стоять рядом? Чтобы найти ответ на вопрос, нужно вероятность «хорошего» исхода поделить на общее количество исходов. Общее число перестановок составляет 20! = 2,5 квинтиллиона. Как посчитать количество «хороших» исходов? Предположим, что Костя, Саши и Леша - это один сверхчеловек. Тогда мы имеем всего восемнадцать субъектов. Число перестановок в данном случае равняется 18 = 6,5 квадриллионов. При всем этом, Костя, Саша и Леша могут произвольно перемещаться между собой в своей неделимой тройке, а это еще 3! = 6 вариантов. Значит всего «хороших» расстановок у нас 18! * 3! Нам остается только найти искомую вероятность: (18! * 3!) / 20! Что равняется примерно 0,016. Если перевести в проценты, то это получается всего 1,6%.

Размещение

Сейчас мы рассмотрим еще одну очень важную и необходимую формулу комбинаторики. Размещение - это наш следующий вопрос, который предлагаем вам рассмотреть в данном разделе статьи. Мы идем на усложнение. Предположим, что мы хотим рассмотреть возможные перестановки, только не из всего множества (n), а из меньшего (m). То есть мы рассматриваем перестановки из n предметов по m.

Основные формулы комбинаторики стоит не просто заучивать, а понимать их. Даже несмотря на то, что они усложняются, так как у нас не один параметр, а два. Предположим, что m = 1, то и А = 1, m = 2, то А = n * (n - 1). Если далее упрощать формулу и перейти на запись при помощи факториалов, то получится вполне лаконичная формула: А = n! / (n - m)!

Сочетание

Мы рассмотрели практически все основные формулы комбинаторики с примерами. Теперь перейдем к заключительному этапу рассмотрения базового курса комбинаторики - знакомство с сочетанием. Сейчас мы будем выбирать m предметов из имеющихся у нас n, при этом всем мы будем выбирать всеми возможными способами. Чем же тогда это отличается от размещения? Мы не будем учитывать порядок. Этот неупорядоченный набор и будет являться сочетанием.

Сразу введем обозначение: С. Берем размещения m шариков из n. Мы перестаем обращать внимание на порядок и получаем повторяющиеся сочетания. Чтобы получить число сочетаний нам надо поделить число размещений на m! (m факториал). То есть С = А / m! Таким образом, способов выбрать из n шаров немножко, равняется примерно столько, сколько выбрать почти все. Этому есть логическое выражение: выбрать немножко все равно, что выкинуть почти все. Еще в данном пункте важно упомянуть и то, что максимальное число сочетаний можно достигнуть при попытке выбрать половину предметов.

Как выбрать формулу для решения задачи?

Мы подробно рассмотрели основные формулы комбинаторики: размещение, перестановка и сочетание. Теперь наша задача - облегчить выбор необходимой формулы для решения задачи по комбинаторике. Можно воспользоваться следующей довольно простой схемой:

  1. Задайте себе вопрос: порядок размещения элементов учитывается в тексте задачи?
  2. Если ответ нет, то воспользуйтесь формулой сочетания (С = n! / (m! * (n - m)!)).
  3. Если ответ нет, то необходимо ответить на еще один вопрос: все ли элементы входят в комбинацию?
  4. Если ответ да, то воспользуйтесь формулой перестановки (Р = n!).
  5. Если ответ нет, то воспользуйтесь формулой размещения (А = n! / (n - m)!).

Пример

Мы рассмотрели элементы комбинаторики, формулы и некоторые другие вопросы. Теперь перейдем к рассмотрению реальной задачи. Представьте, что перед вами лежат киви, апельсин и банан.

Вопрос первый: сколькими способами их можно переставить? Для этого воспользуемся формулой перестановок: Р = 3! = 6 способов.

Вопрос второй: сколькими способами можно выбрать один фрукт? Это очевидно, у нас всего три варианта - выбрать киви, апельсин или банан, но применим формулу сочетаний: С = 3! / (2! * 1!) = 3.

Вопрос третий: сколькими способами можно выбрать два фрукта? Какие есть у нас вообще варианты? Киви и апельсин; киви и банан; апельсин и банан. То есть три варианта, но это легко проверить при помощи формулы сочетания: С = 3! / (1! * 2!) = 3

Вопрос четвертый: сколькими способами можно выбрать три фрукта? Как видно, выбрать три фрукта можно одним-единственным способом: взять киви, апельсин и банан. С = 3! / (0! * 3!) = 1.

Вопрос пятый: сколькими способами можно выбрать хотя бы один фрукт? Это условие подразумевает, что мы можем взять один, два или все три фрукта. Следовательно, мы складываем С1 + С2 + С3 =3 + 3 + 1 = 7. То есть у нас есть семь способов взять со стола хотя бы один фрукт.

Комбинаторика — раздел математики, в котором изучаются вопросы о том, сколько различных комбинаций, подчинённых тем или иным условиям, можно составить из заданных объектов.

Комбинаторика возникла в XVI веке. Первые комбинаторные задачи касались азартных игр. Сегодня комбинаторные методы используются для решения транспортных задач, составления планов производства и реализации продукции. Установлены связи между комбинаторикой и задачами линейного программирования, статистики. Комбинаторика используется для составления и декодирования шифров, для решения других проблем теории информации.

Значительную роль комбинаторные методы играют и в чисто математических вопросах — теории групп и их представлений, изучении основ геометрии, неассоциативных алгебр и др.

Пример комбинаторной задачи. Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

I способ. Постараемся выписать все такие числа. На первом месте может стоять любая цифра кроме 0. Например, 2. На втором месте любая цифра из 0, 4, 6 и 8. Пусть 0. Тогда в качестве третьей цифры можно выбрать любую из 4, 6, 8. Получаем три числа

Вместо 0 на второе место можно было поставить 4, тогда третье цифрой можно записать или 0, или 6, или 8:

Рассуждая аналогично, получаем ещё две тройки трёхзначных чисел с цифрой 2 на первом месте:

Других, кроме выписанных 12-ти, трёхзначных чисел с цифрой 2 на первом месте, и удовлетворяющих условию, нет.

Если на первом месте записать цифру 4, а остальные выбирать из цифр 0, 2, 6, 8, то получим ещё 12 чисел:

По столько же трёхзначных чисел можно составить с цифрой 6 на первом месте и цифрой 8 на первом месте. Значит, искомое количество:

Вот эти числа:

204, 206, 208, 240, 246, 248, 260, 264, 268, 280, 284, 286;

402, 406, 408, 420, 426, 428, 460, 462, 468, 480, 482, 486;

602, 604, 608, 620, 624, 628, 640, 642, 648, 680, 682, 684;

802, 804, 806, 820, 824, 826, 840, 842, 846, 860, 862, 864.

Ответ: 48.

Метод рассуждения, которым мы воспользовались при решении предыдущей задачи, называется перебором возможных вариантов .

Правила сложения и умножения

Комбинаторное правило сложения (правило "или") — одно из основных правил комбинаторики, утверждающее, что, если имеется n элементов и элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 A n можно выбрать m n способами, то выбрать или A 1 , или A 2 , или, и так далее, A n можно

m 1 + m 2 + ... + m n

способами.

Например, выбрать подарок ребёнку из 9 машинок, 7 плюшевых медведей и 3 железных дорог можно

способами.

Ответ: 19.

Правило умножения (правило "и") — ещё одно из важных правил комбинаторики. Согласно ему, если элемент A 1 можно выбрать m 1 способами, элемент A 2 можно выбрать m 2 способами и так далее, элемент A n можно выбрать m n способами, то набор элементов (A 1 , A 2 , ... , A n ) можно выбрать

m 1 · m 2 · ... · m n

способами.

Например.

1) Выбрать ребёнку в подарок машинку, плюшевого медведя и железную дорогу, выбирая из 9 машинок, 7 плюшевых медведей и 3 железных дорог, можно

9 · 7 · 3 = 189

способами.

Ответ: 189.

2) Воспользуемся правилом умножения для решения задачи, уже рассмотренной выше: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II способ.

0 не может стоять первым, значит первую цифру нужно выбрать из 2, 4, 6, 8 — 4 способа;

второй цифрой может быть любая из четырёх оставшихся — 4 способа;

третью цифру можно выбрать среди трёх оставшихся — 3 способа.

Итак, искомое количество трёхзначных чисел:

4 · 4 · 3 = 48.

Ответ: 48.

Перестановки

Множество из n элементов называется упорядоченным , если каждому его элементу поставлено в соответствие натуральное число от 1 до n .

Перестановкой из n элементов называется любое упорядоченное множество из n элементов.

Например, из 4 элементов ♦ ♣ ♠ можно составить следующие 24 перестановки:

♦ ♣ ♠
♣ ♠


♦ ♠



♦ ♣ ♠



♦ ♣ ♠
♣ ♠


♦ ♠







Количество перестановок из n элементов принято обозначать P n . С помощью перебора возможных вариантов легко убедиться, в том что

P 1 = 1; P 2 = 2; P 3 = 6; P 4 = 24.

Вообще, число всевозможных перестановок из n элементов равно произведению всех натуральных чисел от 1 до n , то есть n ! (читается "эн факториал"):

P n = 1 · 2 · 3 · ... · (n - 1 ) · n = n !.

Для P n справедлива рекуррентная формула:

P n = n · P n - 1 .

Значение факториала определено не только для натуральных чисел, но и для 0:

0! = 1 .

Таблица факториалов целых чисел от 0 до 10
n
1
2
3
4
5
6
7
8
9
10
n !
1
1
2
6
24
120
720
5 040
40 320
362 880
3 628 800

Например, сколькими способами 5 мальчиков и 5 девочек могут занять в театре места в одном ряду с 1-го по 10-е место, если никакие два мальчика и никакие две девочки не сидят рядом?

Возможны два случая с одинаковым количеством способов: 1) мальчики — на нечётных местах, девочки на чётных и 2) наоборот.

Рассмотрим первый случай. Мальчики по нечётным местам могут сесть

P 5 = 120

способами. Столько способов и для девочек на чётных местах. Согласно правилу умножения, мальчики — на нечётных местах, девочки на чётных могут расположиться

120 · 120 = 14 400

способами. Значит, всего способов

14 400 + 14 400 = 28 800.

Ответ: 28 800.

Перестановки с повторениями

Перестановкой с повторениями из n элементов, среди которых k разных, при этом насчитывается n 1 неразличимых элементов первого типа, n 2 неразличимых элементов второго типа и так далее, n k неразличимых элементов k -го типа (где n 1 + n 2 + … + n k = n ), называется любое расположение этих элементов по n различным местам.

Число перестановок с повторениями длины n из k разных элементов, взятых соответственно по n 1 , n 2 , …, n k раз каждый обозначается и вычисляется следующим образом:$$P_{n_1,n_2, ... , n_k}=\frac{n!}{n_1!n_2! ... n_k!}~.$$

Например, сколько различных десятизначных чисел можно составить из цифр: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4?

В данном случае: n = 10, n 1 = 1, n 2 = 2, n 3 = 3, n 4 = 4,$$P_{1, 2, 3, 4}=\frac{10!}{1!2! 3! 4!}=\frac{10!}{1!2! 3! 4!}=12~600.$$

Ответ: 12 600.

Размещения

Размещением из n элементов по m (m ≤ n) m элементов, взятых в определённом порядке из данных n элементов.

Два размещения из n элементов по m считаются различными, если они различаются самими элементами или порядком их расположения.

Например, составим все размещения из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B A; B C; B D;

C A; C В; C D;

D A; D В; D C.

Число всех размещений из n элементов по m обозначают \(A_n^m\) (читается: "А из n по m ") и вычисляется по любой из формул:$$A_n^m=n\cdot (n-1)\cdot (n-2)\cdot ...\cdot (n-m+1)\\A_n^m=\frac{n!}{(n-m)!}$$

Примеры задач.

1) Воспользуемся понятием размещений из n элементов по m для решения задачи, уже дважды рассмотренной ранее: Сколько трёхзначных чисел можно составить из цифр 0, 2, 4, 6, 8, используя в записи числа каждую из них не более одного раза?

II I способ.

Первую цифру можно выбрать четырьмя способами из набора 2, 4, 6, 8. В каждом из этих случаев количество пар второй и третей цифры равно числу размещений из 4 оставшихся цифр по 2. Значит искомое количество трёхзначных чисел равно:$$4\cdot A_4^2=4\cdot \frac{4!}{(4-2)!}=4\cdot \frac{4!}{2!}=4\cdot (3\cdot 4)=48.$$Ответ: 48.

2) Для полёта в космос необходимо укомплектовать экипаж из шести человек. В него должны входить: командир корабля, первый и второй его помощники, два бортинженера, один из которых старший, и один врач. Командный состав выбирается из 20 лётчиков, бортинженеры — из 15 специалистов, а врач — из 5 медиков. Сколькими способами можно укомплектовать экипаж?

Поскольку в выборе командного состава важен порядок, то командира и двух его помощников можно выбрать \(A_{20}^3\) способами. Порядок бортинженеров тоже важен, значит, для их выбора существует \(A_{15}^2\) способов. Врач всего один, для его выбора существует 5 способов. Воспользуемся комбинаторным правилом умножения и найдём количество возможных экипажей корабля:$$A_{20}^3\cdot A_{15}^2\cdot 5=\frac{20!}{17!}\cdot \frac{15!}{13!}\cdot 5=(18\cdot 19\cdot 20)\cdot (14\cdot 15)\cdot 5=7~182~000.$$Ответ: 7 182 000.

Понятно, что, если m = n , то$$A_n^m=A_n^n=P_n=n!.$$

Справедливо также, что, если m = n - 1 , то$$A_n^{n-1}=A_n^n=P_n=n!.$$

Размещения с повторениями

Помимо обычных размещений бывают и размещения с повторениями или выборки с возвращением .

Пусть имеется n различных объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем под номером 1 его название, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был только что взят), запишем его название, пометив номером 2, и снова вернём объект обратно. И так далее, пока не получим m названий.

Размещения с повторениями обозначаются \(\overline{A}_n^m\) и, согласно правилу умножения, вычисляются по формуле$$\overline{A}_n^m=n^m.$$Заметим, что здесь допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Это неудивительно: каждый объект после "использования" возвращается обратно и может быть использован повторно.

Например, количество вариантов шестизначного пароля, в котором каждый знак является цифрой от 0 до 9 или буквой латинского алфавита (одна и та же строчная и прописная буква — один символ) и может повторяться, равно:$$\overline{A}_{10+26}^6=\overline{A}_{36}^6=36^6=2~176~782~336.$$Если же строчные и прописные буквы считаются различными символами (как это обычно и бывает), то количество возможных паролей становится ещё более колоссальным:$$\overline{A}_{10+26+26}^6=\overline{A}_{62}^6=62^6=56~800~235~584.$$

Сочетания

Сочетанием из n элементов по m (m ≤ n) называется любое множество, состоящее из m элементов, выбранных из данных n элементов.

В отличии от размещений в сочетаниях не имеет значения, в каком порядке указаны элементы. Два сочетания из n элементов по m считаются различными, если они различаются хотя бы одним элементом.

Например, составим все сочетания из четырёх элементов A, B, C, D по два элемента:

A B; A C;A D;

B C; B D;

C D .

Число всех сочетаний из n элементов по m обозначают \(C_n^m\) (читается: "C из n по m ") и вычисляется по любой из формул:$$C_n^m=\frac{A_n^m}{P_m}$$$$C_n^m=\frac{n\cdot (n-1)\cdot (n-2)~\cdot~ ...~\cdot~ (n-m+1)}{1\cdot2\cdot3~\cdot~...~\cdot ~m}$$$$C_n^m=\frac{n!}{m!\cdot (n-m)!}.$$

Примеры задач.

1) Бригада, занимающаяся ремонтом школы, состоит из 12 маляров и 5 плотников. Из них для ремонта физкультурного зала надо выделить 4 маляров и 2 плотников. Сколькими способами можно это сделать?

Так как порядок маляров в каждой выбранной четвёрке и порядок плотников в каждой выбранной паре не имеет значения, то, согласно комбинаторному правилу умножения, искомое количество способов равно:$$C_{12}^4 \cdot C_5^2 =\frac{12!}{4!\cdot 8!}\cdot \frac{5!}{2!\cdot 3!}=\frac{9\cdot10\cdot11\cdot12}{1\cdot2\cdot3\cdot4}\cdot \frac{4\cdot5}{1\cdot 2}=4~950.$$Ответ: 4 950.

2) В классе обучаются 30 учащихся, среди которых 13 мальчиков и 17 девочек. Сколькими способами можно сформировать команду из 7 учащихся этого класса, если в неё должна входить хотя бы одна девочка?

Количество всех возможных команд по 7 человек из класса равно \(C_{30}^7\). Количество команд в которых только мальчики — \(C_{13}^7\). Значит, количество команд, в которых есть хотя бы одна девочка, равно:$$C_{30}^7 - C_{13}^7 =\frac{30!}{7!\cdot 23!} - \frac{13!}{7!\cdot 6!}=2~035~800-1~716=2~034~084.$$Ответ: 2 034 084.

Сочетания с повторениями

Помимо обычных сочетаний рассматривают сочетания с повторениями .

Пусть в множестве имеется n объектов. Выберем из них m штук, действуя по следующему принципу. Возьмём любой, но не будем его устанавливать в какой-то ряд, а просто запишем, сам же объект после этого вернём к остальным. Затем опять из всех n объектов выберем один (в том числе, возможно, и тот, который был взят и записан ранее), запишем его название и снова вернём объект обратно. И так далее, пока не получим m названий.

Принципиальное отличие от размещений с повторениями заключается в том, что в данном случае элементы списка не нумеруются. Например, список "A, С, A, В" и список "А, А, В, С" считаются одинаковыми.

Сочетания с повторениями обозначаются \(\overline{C}_n^m\) и вычисляются по формуле$$\overline{C}_n^m=P_{m,~n-1}=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$И ещё один способ записи той же формулы:$$\overline{C}_n^m=C_{m+n-1}^m=\frac{(m+n-1)!}{m!\cdot (n-1)!}.$$Заметим, что подобно размещениям с повторениями, допустим случай, когда m > n , то есть выбранных объектов больше, чем их всего имеется. Действительно, каждый объект после "использования" возвращается обратно и может быть использован снова и снова.

Например, выясним сколькими способами можно купить 7 пирожных в кондитерском отделе, если в продаже 4 их сорта?

Естественно полагать, что количество пирожных каждого вида не меньше 7, и при желании можно купить только пирожные одного из них. Так как порядок в котором кладут купленные пирожные в коробку не важен, то имеем дело с сочетаниями с повторениями. Так как нужно выбрать 7 пирожных из 4 его видов, то искомое количество способов равно:$$\overline{C}_4^7=\frac{(7+4-1)!}{7!\cdot (4-1)!}=\frac{10!}{7!\cdot 3!}=\frac{8\cdot 9\cdot 10}{1\cdot 2\cdot 3}=120.$$

Ответ: 120.

Бином Ньютона и биномиальные коэффициенты

Равенство$$(x+a)^n=C_n^0x^na^0+C_n^1x^{n-1}a^1+...+C_n^mx^{n-m}a^m+...+C_n^nx^0a^n$$называют биномом Ньютона или формулой Ньютона . Правая часть равенства называется биномиальным разложением в сумму , а коэффициенты \(C_n^0,~C_n^1,~...~,~C_n^n\) — биномиальными коэффициентами .

Свойства биномиальных коэффициентов:

\(~~~~~~~~1.~~C_n^0=C_n^n=1\\ ~~~~~~~~2.~~C_n^m=C_n^{n-m}\\ ~~~~~~~~3.~~C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\\ ~~~~~~~~4.~~C_n^0+C_n^1+C_n^2+~...~+C_n^n=2^n\\ ~~~~~~~~5.~~C_n^0+C_n^2+C_n^4+~... =C_n^1+C_n^3+C_n^5+~...=2^{n-1}\\ ~~~~~~~~6.~~C_n^n+C_{n+1}^n+C_{n+2}^n+~...~+C_{n+m-1}^n=C_{n+m}^{n+1}\\ \)

Свойства биномиального разложения:

1. Число всех членов разложения на единицу больше показателя степени бинома,

то есть равно n + 1 .

2. Сумма показателей степеней x и a каждого члена разложения равна показателю степени бинома,

то есть (n - m) + m = n .

3. Общий член разложения (обозначается T n +1 ) имеет вид$$T_{n+1}=C_n^m x^{n-m}a^m,~~~~m=0,~1,~2,~...~,~n.$$

Треугольник Паскаля

Все возможные значения биномиальных коэффициентов (числа сочетаний) для каждого показателя степени бинома n можно записать в виде бесконечной треугольной таблицы. Такая таблица называется треугольником Паскаля:






\(C_0^0\)









\(C_1^0\)

\(C_1^1\)







\(C_2^0\)

\(C_2^1\)

\(C_2^2\)





\(C_3^0\)

\(C_3^1\)

\(C_3^2\)

\(C_3^3\)



\(C_4^0\)

\(C_4^1\)

\(C_4^2\)

\(C_4^3\)

\(C_4^4\)

\(C_5^0\)

\(C_5^1\)

\(C_5^2\)

\(C_5^3\)

\(C_5^4\)

\(C_5^5\)

. . .



. . .



. . .

В этом треугольнике крайние числа в каждой строке равны 1. Действительно, \(C_n^0=C_n^n=1\). А каждое не крайнее число равно сумме двух чисел предыдущей строки, стоящих над ним: \(C_n^m=C_{n-1}^{m-1}+C_{n-1}^{m}\).

Таким образом, этот треугольник предлагает ещё один (рекуррентный) способ вычисления чисел \(C_n^m\):

n = 0








1








n = 1







1

1







n = 2






1

2

1






n = 3





1

3

3

1





n = 4




1

4

6

4

1




n = 5



1

5

10

10

5

1



n = 6


1

6

15

20

15

6

1


n = 7

1

7

21

35

35

21

7

1

n = 8
1

8

28

56

70

56

28

8

1
...



...



...

...



...



Формулы комбинаторики.

Комбинаторика - это раздел математики, основной задачей которой является подсчёт числа вариантов, возникающих в какой-либо ситуации. При решении задач с использованием классического определœения вероятности нам понужнобятся некоторые формулы комбинаторики.

Размещения .

Определœение 1. Размещением без повторений из n элементов по k принято называть всякое упорядоченное подмножество данного множества M={a 1 ,a 2 ,¼,a n }, содержащее k элементов.

Отметим, что из определœения сразу следует, что, во-первых, всœе элементы в размещении без повторений различны (в противном случае найдется два одинаковых элемента), во-вторых, k£ n , в-третьих, два различных размещения без повторений различаются либо составом входящих в них элементов, либо порядком их расположения. То есть порядок следования существенен.

Теорема 1. Число различных размещений без повторений из n элементов по k (k£ n) равно

Доказательство.

Пусть M ={a 1 ,a 2 ,¼,a n }. Требуется определить число различных строк вида (x 1 ,x 2 ,¼,x k ), где всœе элементы x 1 ,x 2 ,¼,x k ÎM и различны. Первый элемент x 1 можно выбрать n способами. В случае если x 1 уже выбран, то для выбора x 2 осталось n-1 элементов. Аналогично, x 3 можно выбрать n -2 способами и т.д. Последний элемент x k можно выбрать n-k+1 способами. Перемножая эти числа, получим формулу (4).Теорема доказана.

Пример 1. В классе 12 учебных предметов и в понедельник 5 разных уроков. Сколькими способами должна быть составлено расписание занятий на понедельник?

Число всœевозможных вариантов расписания есть, очевидно, число различных размещений из 12 элементов по 5, то есть

Важным частным случаем, является случай, когда n=k , то есть когда в строке (x 1 ,x 2 ,¼,x n) участвуют всœе элементы множества M . Строки без повторений, составленные из n элементов множества M называют перестановками из n элементов. Напомним, что в математике через n! обозначают произведение всœех натуральных чисел от 1 до n, то есть ¼и по определœению считают, что 0!=1.

Следствие 1 . Пользуясь формулой (4), находим, что число различных перестановок P n из n элементов равно P n = n !.

Определœение 2. Размещением с повторениями из n элементов по k принято называть любая упорядоченная строка из k элементов множества M={a 1 ,a 2 ,¼,a n }, некоторые из которых могут повторяться.

К примеру, слово “мама” есть размещение с повторениями из 2-х элементов M ={м, а} по 4.

Теорема 2. Число различных размещений с повторениями из n элементов по k

Доказательство.

Первый элемент в строку из k элементов должна быть выбран n способами, поскольку |M|=n. Точно также 2-й, 3-й, …,k-й элементы бывают выбраны n способами. Перемножая эти числа, получим

k раз

Теорема доказана.

Пример 2. Сколько можно составить различных двузначных чисел из цифр 1, 2, 3, 4, 5?

В этой задаче M ={1, 2, 3, 4, 5}, n=5, k=2.По этой причине ответом является число

Пример 3. Сколькими способами k пассажиров могут распределиться по n вагонам, в случае если для каждого пассажира существенным является только номер вагона, а не занимаемое им в вагоне место?

Перенумеруем всœех пассажиров. Пусть x 1 - номер вагона, выбранного первым пассажиром, x 2 - номер вагона второго пассажира, …, x k - номер вагона k -го пассажира. Строка (x 1 ,x 2 ,¼,x k ) полностью характеризует распределœение пассажиров по вагонам. Каждое из чисел x 1 ,x 2 ,¼,x k может принимать любое целое значение от 1 до n. По этой причине в данном примере

M ={1, 2,…,n} и различных распределœений по вагонам будет столько же, сколько строк длиной k можно составить из элементов множества M , то есть

Отметим ещё раз, что в размещениях с повторениями и без повторений важен порядок следования элементов. В случае если порядок следования элементов не существенен, то в данном случае говорят о сочетаниях.

Сочетания (без повторения ).

Определœение 3. Пусть M={a 1 ,a 2 ,¼,a n }. Любое подмножество X мно-жества M , содержащее k элементов, принято называть сочетанием k элементов из n.

Отметим сразу, что в данном определœении порядок следования элементов множества X несущественен и, что k£n , поскольку k=½X½, n=½M½ и XÍM .

Теорема 3. Число различных сочетаний k элементов из n равно

. (6)

Доказательство.

Каждое сочетание k элементов из n порождает k! различных размещений без повторений из n по k с помощью различных перестановок (см. следствие 1). Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, всœе сочетаний из k элементов из n после различных k! перестановок порождают всœе размещений без повторений из n по k . По этой причине . Следовательно,

Публикации по теме