Черчение. Учебное пособие: Проекционное черчение, аксонометрия

Что такое диметрия

Диметрия представляет собой один из видов аксонометрической проекции. Благодаря аксонометрии при одном объемном изображении можно рассматривать объект сразу в трех измерениях. Поскольку коэффициенты искажений всех размеров по 2-м осям одинаковы, данная проекция и получила название диметрия.

Прямоугольная диметрия

При расположении оси Z" вертикально, при этом оси Х" и Y" образуют с горизонтального отрезка углы 7 градуса 10 минут и 41 градус 25 минут. В прямоугольной диметрии коэффициент искажения по оси Y будет составлять 0,47, а по осям Х и Z в два раза больше, то есть 0,94.

Чтобы осущесвить построение приближенно аксонометрические оси обычной диметрии, необходимо принять, что tg 7 градусов 10 минут равен 1/8, а tg 41 градуса 25 минут равен 7/8.

Как построить диметрию

Для начала необходимо начертить оси, чтобы изобразить предмета в диметрии. В любой прямоугольной диметрии углы, находящиеся между осями Х и Z, равны 97 градусов 10 минут, а между осями Y и Z – 131 градусов 25 минут и между Y и Х – 127 градусов 50 минут.

Теперь требуется нанести оси на ортогональные проекции изображаемого предмета, учитывая выбранное положение предмета для вычерчивания в диметрической проекции. После того, как завершите перенос на объемное ихображение габаритных размеров предмета, можете приступать к чертежу незначительных элементов на поверхности предмета.

Стоит запомнить, что окружности в каждой плоскости диметрии изображаются соответствующими эллипсами. В диметрической проекции без искажения по осям Х и Z большая ось нашего эллипса во всех 3-х плоскостях проекции будет составлять 1,06 диаметра нарисованной окружности. А малая ось эллипса в плоскости ХОZ составляет 0,95 диаметра, а в плоскости ZОY и ХОY – 0,35 диаметра. В диметрической проекции с искажением по осям Х и Z большая ось эллипса равняется диаметру окружности во всех плоскостях. В плоскости ХОZ малая ось эллипса составляет 0,9 диаметра, а плоскостях ZОY и ХОY равны 0,33 диаметра.

Чтобы получить более детально изображение, необходимо выполнить вырез через детали на диметрии. Заштриховку при вычеркивании выреза следует наносить параллельно проведенной диагонали проекции выбранного квадрата на необходимую плоскость.

Что такое изометрия

Изометрия является одним из видов аксонометрической проекции, где расстояния единичных отрезков на всех 3-х осях одинаковые. Изометрическая проекция активно используется в машиностроительных чертежах, чтобы отобразить внешний вид предметов, а также в разнообразных компьютерных играх.

В математике изометрия известна как преобразование метрического пространства, которое сохраняет расстояние.

Прямоугольная изометрия

В прямоугольной (ортогональной) изометрии аксонометрические оси создают между собой углы, которые равны 120 градусам. Ось Z находится в вертикальном положении.

Как начертить изометрию

Построение изометрии предмета дает возможность получить наиболее выразительное представление о пространственных свойствах изображаемого объекта.

Перед тем, как начать построение чертежа в изометрической проекции, необходимо выбрать такое расположение изображаемого предмета, чтобы были максимально видны его пространственные свойства.

Теперь вам требуется определиться с видом изометрии, которую будете чертить. Существует два ее вида: прямоугольная и горизонтальная косоугольная.

Нарисуйте оси легкими тонкими линиями, чтобы изображение получилось по центру листа. Как уже раньше говорилось, углы в прямоугольном виде изометрической проекции должны составлять 120 градусов.

Начинайте рисовать изометрию с именно верхней поверхности изображения предмета. От углов получившейся горизонтальной поверхности нужно провести две вертикальные прямые и отложить на них соответствующие линейные размеры предмета. В изометрической проекции все линейные размеры по всех трем осям будут оставаться кратны единице. Затем последовательно требуется соединить созданные точки на вертикальных прямых. В результате получиться внешний контур предмета.

Стоит учитывать, что при изображении любого предмета в изометрической проекции видимость криволинейных деталей будет обязательно искажаться. Окружность должна изображаться эллипсом. Отрезок между точками окружности (эллипса) по осям изометрической проекции должен быть равен диаметру окружности, а оси эллипса не будут совпадать с осями изометрической проекции.

Если изображаемый объект имеет скрытые полости ли сложные элементы, постарайтесь выполнить заштриховку. Она может быть простой либо ступенчатой, все зависит сложности элементов.

Запомните, что все построение должно выполнять строго с применением чертежных инструментов. Применяйте несколько карандашей с разными видами твердости.

Прямоугольной изометрией называется аксонометрическая проекция, у которой коэффициенты искажения по всем трём осям равны, а углы между аксонометрическими осями 120. На рис. 1 представлено положение аксонометрических осей прямоугольной изометрии и способы их построения.

Рис. 1. Построение аксонометрических осей прямоугольной изометрии с помощью: а) отрезков; б) циркуля; в) угольников или транспортира.

При практических построениях коэффициент искажения (К) по аксонометрическим осям согласно ГОСТ 2.317- 2011 рекомендуют равный единице. При этом изображение получают более крупным по сравнению с теоретическим или точным изображением при коэффициентах искажения 0,82. Увеличение равно 1,22. На рис. 2 приведён пример изображения детали в прямоугольной изометрической проекции.

Рис. 2. Изометрия детали.

      Построение в изометрии плоских фигур

Задан правильный шестиугольник АВСDЕF, расположенный параллельно горизонтальной плоскости проекций Н (П 1).

а) Строим изометрические оси (рис.3).

б) Коэффициент искажения по осям в изометрии равен 1, поэтому от точки О 0 по осям откладываем натуральные величины отрезков: А 0 О 0 = АО; О 0 D 0 = ОD; К 0 О 0 = КО; О 0 Р 0 = ОР.

в) Линии, параллельные координатным осям, проводятся в изометрии также параллельно соответствующим изометрическим осям в натуральную величину.

В нашем примере стороны ВС и FЕ параллельны оси Х .

В изометрии они вычерчиваются также параллельно оси Х в натуральную величину В 0 С 0 = ВС; F 0 Е 0 = FЕ.

г) Соединяя полученные точки, получим изометрическое изображение шестиугольника в плоскости Н (П 1).

Рис. 3. Изометрическая проекция шестиугольника на чертеже

и в горизонтальной плоскости проекции

На рис. 4 представлены проекции наиболее распространенных плоских фигур в различных плоскостях проекций.

Наиболее распространённой фигурой является окружность. Изометрическая проекция окружности в общем случае представляет собой эллипс. Эллипс строят по точкам и обводят по лекалу, что в практике черчения весьма неудобно. Поэтому эллипсы заменяют овалами.

На рис. 5 построен в изометрии куб с окружностями, вписанными в каждую грань куба. При изометрических построениях важно правильно расположить оси овалов в зависимости от плоскости, в которой предполагается изобразить окружность. Как видно на рис. 5 большие оси овалов располагаются по большей диагонали ромбов, в которые спроецировались грани куба.

Рис. 4 Изометрическое изображение плоских фигур

а) на чертеже; б) на плоскости Н; в) на плоскости V; г) на плоскостиW.

Для прямоугольной аксонометрии любого вида правило определения главных осей эллипса овала, в который проецируется окружность, лежащая в какой-либо плоскости проекции, может быть сформулировано следующим образом: большая ось овала располагается перпендикулярно к той аксонометрической оси, которая отсутствует в данной плоскости, а малая совпадает с направлением этой оси. Форма и размеры овалов в каждой плоскости изометрических проекций одинаковы.

ТЕОРеТИЧЕСКАЯ ЧАСТЬ

Для наглядного изображения изделий или их составных частей применяются аксонометрические проекции. В настоящей работе рассматриваются правила построения прямоугольной изометрической проекции.

Для прямоугольных проекций, когда угол между проецирующими лучами и плоскостью аксонометрических проекций равен 90°, коэффициенты искажения связаны следующим соотношением:

k 2 + т 2 + п 2 = 2. (1)

Для изометрической проекции коэффициенты искажения равны, следовательно, k = т = п.

Из формулы (1) получается

3k 2 =2; ; k = т = п 0,82.

Дробность коэффициентов искажений приводит к усложнению расчетов размеров, необходимых при построении аксонометрического изображения. Для упрощения этих расчетов используются приведенные коэффициенты искажений:

для изометрической проекции коэффициенты искажения составляют:

k = т = n = 1.

При использовании приведенных коэффициентов искажения аксонометрическое изображение предмета получается увеличенным против его натуральной величины для изометрической проекции в 1,22 раза. масштаб изображения составляет: для изометрии – 1,22: 1.

Схемы расположения осей и величины приведенных коэффициентов искажений для изометрической проекции изображены на рис. 1. Там же указаны величины уклонов, которыми можно пользоваться для определения направления аксонометрических осей при отсутствии соответствующего инструмента (транспортира или угольника с углом 30°).

Окружности в аксонометрии, в общем случае, проецируются в виде эллипсов, причем при использовании действительных коэффициентов искажений большая ось эллипса по величине равна диаметру окружности. При использовании приведенных коэффициентов искажений линейные величины получаются увеличенными, и чтобы привести к одному масштабу все элементы изображаемой в аксонометрии детали, большая ось эллипса для изометрической проекции принимается равной 1,22 диаметра окружности.

Малая ось эллипса в изометрии для всех трех плоскостей проекций равна 0,71 диаметра окружности (рис. 2).

Большое значение для правильного изображения аксонометрической проекции предмета имеет расположение осей эллипсов относительно аксонометрических осей. Во всех трех плоскостях прямоугольной изометрической проекции большая ось эллипса должна быть направлена перпендикулярно оси, отсутствующей в данной плоскости. Например, у эллипса, расположенного в плоскости xОz, большая ось направлена перпендикулярно оси у, проецирующейся на плоскость xОz в точку; у эллипса, расположенного в плоскости yОz, - перпендикулярно оси х и т. д. На рис. 2 приведена схема расположения эллипсов в различных плоскостях для изометрической проекции. Здесь же приведены коэффициенты искажений для осей эллипсов, в скобках указаны величины осей эллипсов при использовании действительных коэффициентов.

На практике построение эллипсов заменяют построением четырехцентровых овалов. На рис. 3 показано построение овала в плоскости П 1. Большая ось эллипса АВ направлена перпендикулярно отсутствующей оси z , а малая ось эллипса CD – совпадает с ней. Из точки пересечения осей эллипса проводят окружность радиусом, равным радиусу окружности. На продолжении малой оси эллипса находят первые два центра дуг сопряжения (О 1 и О 2), из которых радиусом R 1 = О 1 1 = О 2 2 проводят дуги окружностей. На пересечении большой оси эллипса с линиями радиуса R 1 определяют центры (О 3 и О 4), из которых радиусом R 2 = О 3 1 = О 4 4 проводят замыкающие дуги сопряжения.

Обычно аксонометрическую проекцию предмета строят по ортогональному чертежу, причем построение получается более простым, если положение детали относительно осей координат х , у и z остается таким же, как и на ортогональном чертеже. Главный вид предмета следует располагать на плоскости xОz.

Построение начинают с проведения аксонометрических осей и изображения плоской фигуры основания, затем строят основные контуры детали, наносят линии уступов, углублений, выполняют отверстия в детали.

При изображении разрезов в аксонометрии на аксонометрических проекциях, как правило, невидимый контур штриховыми линиями не показывают. Для выявления внутреннего контура детали, так же как и на ортогональном чертеже, в аксонометрии выполняют разрезы, но эти разрезы могут не повторять разрезы ортогонального чертежа. Чаще всего на аксонометрических проекциях, когда деталь представляет собой симметричную фигуру, вырезают одну четвертую или одну восьмую часть детали. На аксонометрических проекциях, как правило, не применяют полные разрезы, так как такие разрезы уменьшают наглядность изображения.

При выполнении аксонометрических изображений с разрезами линии штриховки сечений наносят параллельно одной из диагоналей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны которых параллельны аксонометрическим осям (рис. 4).

При выполнении разрезов секущие плоскости направляют только параллельно координатным плоскостям (xОz, yОz или хОу).



Способы построения изометрической проекции детали: 1. Способ построения изометрической проекции детали от формообразующей грани используется для деталей, форма кото­рых имеет плоскую грань, называемую формообразующей; ши­рина (толщина) детали на всем протяжении одинакова, на боко­вых поверхностях отсутствуют пазы, отверстия и другие элемен­ты. Последовательность построения изометрической проекции заключается в следующем: 1) построение осей изометрической проекции; 2) построение изометрической проекции формообразующей грани; 3) построение проекций остальных граней посредством изо­бражения ребер модели; 4) обводка изометрической проекции (рис. 5).
Рис. 5. Построение изометрической проекции детали, начиная от фор­мообразующей грани 2. Способ построения изометрической проекции на основе по­следовательного удаления объемов используется в тех случаях, когда отображаемая форма получена в результате удаления из исходной формы каких-либо объемов (рис. 6). 3. Способ построения изометрической проекции на основе по­следовательного приращения (добавления) объемов применяется для выполнения изометрического изображения детали, форма которой получена из нескольких объемов, соединенных опреде­ленным образом друг с другом (рис. 7). 4. Комбинированный способ построения изометрической про­екции. Изометрическую проекцию детали, форма которой полу­чена в результате сочетания различных способов формообразо­вания, выполняют, используя комбинированный способ построе­ния (рис. 8). Аксонометрическую проекцию детали можно выполнять с изображением (рис. 9, а) и без изображения (рис. 9, б) неви­димых частей формы.
Рис. 6. Построение изометрической проекции детали на основе последовательного удаления объемов
Рис. 7 Построение изометрической проекции детали на основе последовательного приращения объемов
Рис. 8. Использование комбинированного способа построения изометрической проекции детали
Рис. 9. Варианты изображения изометрических проекций детали: а - с изображением невидимых частей; б - без изображения невидимых частей

ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ ПО АКСОНОМЕТРИИ

Построить прямоугольную изометрию детали по выполненному чертежу простого или сложного разреза на выбор студента. Деталь строится без невидимых частей с вырезом ¼ части по осям.

На рисунке показано оформление чертежа аксонометрической проекции детали после удаления лишних линий, обводки контуров детали и штриховки сечений.

ЗАДАНИЕ №5 СБОРОЧНЫЙ ЧЕРТЕЖ ВЕНТИЛЯ

Стандарт устанавливает следующие виды, получаемые на основных плоскостях проекций (рис.1.2): вид спереди (главный), вид сверху, вид слева, вид справа, вид снизу, вид сзади.

За главный вид принимают тот, который дает наиболее полное представление о форме и размерах предмета.

Количество изображений должно быть наименьшим, но обеспечивающим полное представление о форме и размерах предмета.

Если основные виды расположены в проекционной связи, то их названия не обозначают. Для наилучшего использования поля чертежа виды допускается располагать вне проекционной связи (рис.2.2). В этом случае изображение вида сопровождается обозначением по типу:

1)указывается направление взгляда

2) над изображением вида наносят обозначение А , как на рис. 2.1.

Виды обозначаются прописными буквами русского алфавита шрифтом, на 1...2 размера превышающим шрифт размерных чисел.

На рисунке 2.1 показана деталь, для которой необходимо выполнить четыре вида. Если эти виды расположить в проекционной связи, то на поле чертежа они займут много места. Можно расположить необходимые виды так, как показано на рис. 2.1. Формат чертежа уменьшается, но нарушена проекционная связь, поэтому нужно выполнить обозначение вида справа ().

2.2.Местные виды.

Местным видом называется изображение отдельного ограниченного места поверхности предмета.

Он может быть ограничен линией обрыва (рис.2.3 а) или не ограничен (рис.2.3б).

В общем случае местные виды оформляются так же, как и основные виды.

2.3. Дополнительные виды.

Если какую-либо часть предмета невозможно показать на основных видах без искажения формы и размеров, то применяют дополнительные виды.

Дополнительным видом называется изображение видимой части поверхности предмета, получаемой на плоскости, не параллельной ни одной из основных плоскостей проекций.


Если дополнительный вид выполняется в проекционной связи с соответствующим изображением (рис.2.4 а), то его не обозначают.

Если изображение дополнительного вида выносится на свободное место (рис.2.4 б), т.е. нарушается проекционная связь, то направление взгляда указывается стрелкой, расположенной перпендикулярно изображаемой части детали и обозначается буквой русского алфавита, причем буква остается параллельна основной надписи чертежа, а не поворачивается за стрелкой.

При необходимости изображение дополнительного вида можно поворачивать, тогда над изображением ставится буква и знак поворота (это окружность 5...6мм со стрелкой, между створками которой угол 90°) (рис.2.4 в).

Дополнительный вид чаще всего выполняют как местный.

3.Разрезы.

Разрезом называется изображение предмета, мысленно рассеченного одной или несколькими плоскостями. На разрезе показывается то, что лежит в секущей плоскости и что расположено за ней.

При этом часть предмета, расположенную между наблюдателем и секущей плоскостью, мысленно удаляют, в результате чего все закрытые этой частью поверхности становятся видимыми.

3.1. Построение разрезов.

На рис.3.1 даны три вида предмета (без разреза). На главном виде внутренние поверхности: прямоугольный паз и цилиндрическое ступенчатое отверстие показаны штриховыми линиями.

На рис. 3.2 вычерчен разрез, полученный следующим образом.

Секущей плоскостью, параллельной фронтальной плоскости проекций, предмет мысленно рассечен вдоль своей оси, проходящей через прямоугольный паз и цилиндрическое ступенчатое отверстие, расположенное в центре предмета.. Затем мысленно была удалена передняя половина предмета, находящаяся между наблюдателем и секущей плоскостью. Так, как предмет симметричен, то нет смысла давать полный разрез. Его выполняют справа, а слева оставляют вид.

Вид и разрез разделяют штрихпунктирной линией. На разрезе показано то, что получилось в секущей плоскости и то, что находится за ней.

При рассмотрении чертежа можно заметить следующее:

1) штриховые линии, которыми на главном виде обозначены прямоугольный паз и цилиндрическое ступенчатое отверстие, на разрезе обведены сплошными основными линиями, так как они стали в результате мысленного рассечения предмета видимыми;

2) на разрезе, проходившая вдоль главного вида сплошная основная линия, обозначающая срез, отпала вовсе, так как передняя половина предмета не изображается. Срез, находящийся на изображаемой половине предмета, не обозначен, так как на разрезах не рекомендуется показывать штриховыми линиями невидимые элементы предмета;

3) на разрезе штриховкой выделена плоская фигура, находящаяся в секущей плоскости, штриховка наносится только в том месте, где секущая плоскость рассекает материал предмета. По этой причине задняя поверхность цилиндрического ступенчатого отверстия не заштрихована, так же как и прямоугольный паз (при мысленном рассечении предмета секущая плоскость этих поверхностей не затронула);

4) при изображении цилиндрического ступенчатого отверстия проведена сплошная основная линия, изображающая на фронтальной плоскости проекций горизонтальную плоскость, образованную изменением диаметров;

5) разрез, помещенный на месте главного изображения, никак не изменяет изображений вида сверху и слева.

При выполнении разрезов на чертежах необходимо руководствоваться следующими правилами:

1) выполнять на чертеже только полезные разрезы ("полезными"называются разрезы, выбранные по соображениям необходимости и достаточности);

2) невидимые ранее внутренние очертания, изображаемые штриховыми линиями, обводить сплошными основными линиями;

3) фигуру сечения, входящую в разрез, штриховать;

4) мысленное рассечение предмета должно относиться только к данному разрезу и не влиять на изменение других изображений того же предмета;

5) на всех изображениях штриховые линии убираются, т. к. внутренний контур хорошо читается на разрезе.

3.2 Обозначение разрезов

Для того, чтобы знать, в каком месте предмет имеет форму, показанную на изображении разреза, место, где проходила секущая плоскость, и сам разрез обозначают. Линия, обозначающая секущую плоскость, называется линией сечения. Она изображается разомкнутой линией.

При этом выбирают начальные буквы алфавита (А, Б, В, Г, Д и т. д.). Над разрезом, полученным с помощью данной секущей плоскости, выполняют надпись по типу А-А , т.е. двумя парными буквами через тире (рис.3.3).

Буквы у линий сечения и буквы, обозначающие разрез, должны быть большего размера, чем цифры размерных чисел на том же чертеже (на один-два номера шрифта)

В случаях, когда секущая плоскость совпадает с плоскостью симметрии данного предмета и соответствующие изображения расположены на одном и том же листе в непосредственной проекционной связи и не разделены какими-либо другими изображениями, рекомендуется не отмечать положение секущей плоскости и изображение разреза не сопровождать надписью.

На рис.3.3 показан чертеж предмета, на котором выполнено два разреза.

1. На главном виде разрез выполнен плоскостью, расположение которой совпадает с плоскостью симметрии для данного предмета. Она проходит вдоль горизонтальной оси на виде сверху. Поэтому этот разрез не обозначен.

2. Секущая плоскость А-А не совпадает с плоскостью симметрии данной детали, поэтому соответствующий разрез обозначен.

Буквенное обозначение секущих плоскостей и разрезов располагают параллельно основной надписи независимо от угла наклона секущей плоскости.

3.3 Штриховка материалов в разрезах и сечениях.

В разрезах и сечениях фигуру, полученную в секущей плоскости, штрихуют.

ГОСТ 2.306-68 устанавливает графическое обозначение различных материалов (рис.3.4)

Штриховка для металлов наносится тонкими линиями под углом 45° к линиям контура изображения, или к его оси, или к линиям рамки чертежа, причем, расстояние между линиями должно быть одинаковым.

Штриховка на всех разрезах и сечениях для данного предмета одинакова по направлению и шагу (расстояние между штрихами).

3.4. Классификация разрезов.

Разрезы имеют несколько классификаций:

1. Классификация, в зависимости от количества секущих плоскостей;

2. Классификация, в зависимости от положения секущей плоскости относительно плоскостей проекций;

3. Классификация, в зависимости от положения секущих плоскостей относительно друг друга.

Рис. 3.5

3.4.1 Простые разрезы

Простым называют разрез, выполненный одной секущей плоскостью.

Положение секущей плоскости может быть различным: вертикальным, горизонтальным, наклонным. Его выбирают в зависимости от формы предмета, внутреннее устройство которого нужно показать.

В зависимости от положения секущей плоскости относительно горизонтальной плоскости проекций разрезы подразделяются на вертикальные, горизонтальные и наклонные.

Вертикальным называется разрез при секущей плоскости, перпендикулярной горизонтальной плоскости проекций.

Вертикально расположенная секущая плоскость может быть параллельна фронтальной плоскости проекций или профильной, образуя при этом соответственно фронтальный (рис.3.6) или профильный разрезы (рис.3.7).

Горизонтальным разрезом называется разрез при секущей плоскости, параллельной горизонтальной плоскости проекций (рис.3.8).

Наклонным разрезом называется разрез при секущей плоскости, составляющей с одной из основных плоскостей проекций угол, отличный от прямого (рис.3.9).

1. По аксонометрическому изображению детали и заданным размерам начертить три ее вида - главный, сверху и слева. Наглядное изображение не перечерчивать.

7.2. Задание 2

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

7.3. Задание 3

1. По размерам перечертить заданные два вида предмета и построить третий вид.

2. Выполнить необходимые разрезы.

3. Построить линии пересечения поверхностей.

4. Нанести размерные линии и проставить размерные числа.

5. Выполнить обводку чертежа и заполнить основную надпись.

Для всех задач виды чертить только в проекционной связи.

7.1. Задача 1.

Рассмотрим примеры выполнения заданий.

Задача1 . По наглядному изображению построить три вида детали и выполнить необходимые разрезы.

7.2 Задача 2

Задача2 . По двум видам построить третий вид и выполнить необходимые разрезы.

Задача 2. III этап.

1. Выполнить необходимые разрезы. Количество разрезов должно быть минимальным, но достаточным, чтобы прочитать внутренний контур.

1. Секущая плоскость А открывает внутренние соосные поверхности. Эта плоскость параллельна фронтальной плоскости проекций, поэтому разрез А-А совмещается с главным видом.

2. На виде слева показан местный разрез, открывающий цилиндрическое отверстие Æ32.

3. Размеры наносятся на тех изображениях, где поверхность читается лучше, т.е. диаметр, длина и т.д., например, Æ52 и длина 114.

4. Выносные линии по возможности не пересекать. Если главный вид выбран правильно, то наибольшее количество размеров будет на главном виде.

Проверить:

  1. Чтобы каждый элемент детали имел достаточное количество размеров.
  2. Чтобы все выступы и отверстия были привязаны размерами к другим элементам детали (размер 55, 46, и 50).
  3. Габаритные размеры.
  4. Выполнить обводку чертежа, убрав все линии невидимого контура. Заполнить основную надпись.

7.3. Задача 3.

Построить три вида детали и выполнить необходимые разрезы.

8. Сведения о поверхностях.

Построение линий, принадлежащих поверхностям.

Поверхности.

Для того, чтобы построить линии пересечения поверхностей, нужно уметь строить не только поверхности, но и точки, расположенные на них. В этом разделе рассматриваются наиболее часто встречающиеся поверхности.

8.1. Призма.

Задана трехгранная призма (рис.8.1), усеченная фронтально-проецирующей плоскостью (2ГПЗ, 1 алгоритм, модуль №3). S Ç L= т (1234 )

Так как призма проецирующая относительно П 1 , то горизонтальная проекция линии пересечения уже есть на чертеже, она совпадает с главной проекцией заданной призмы.

Секущая плоскость проецирующая относительно П 2 , значит и фронтальная проекция линии пересечения есть на чертеже, она совпадает с фронтальной проекцией этой плоскости.

Профильная проекция линии пересечения строится по двум заданным проекциям.

8.2. Пирамида

Задана усеченная трехгранная пирамида Ф(S,АВС) (рис.8.2).

Данная пирамида F пересекается плоскостями S, D и Г .

2 ГПЗ, 2 алгоритм (Модуль №3).

Ф Ç S = 123

S ^ П 2 Þ S 2 = 1 2 2 2 3 2

1 1 2 1 3 1 и 1 3 2 3 3 3 Ф .

Ф Ç D = 345

D ^ П 2 Þ = 3 2 4 2 5 2

3 1 4 1 5 1 и 3 3 4 3 5 3 строятся по принадлежности к поверхности Ф .

Ф Ç Г = 456

Г ÇП 2 Þ Г 2 = 4 2 5 6

4 1 5 1 6 1 и 4 3 5 3 6 3 строятся по принадлежности к поверхности Ф .

8.3. Тела, ограниченные поверхностями вращения.

Телами вращения называют геометрические фигуры, ограниченные поверхностями вращения (шар, эллипсоид вращения, кольцо) или поверхностью вращения и одной или несколькими плоскостями (конус вращения, цилиндр вращения и т. д.). Изображения на плоскостях проекций, параллельных оси вращения, ограничены очерковыми линиями. Эти очерковые линии являются границей видимой и невидимой части геометрических тел. Поэтому при построении проекций линий, принадлежащих поверхностям вращения, необходимо строить точки, расположенные на очерках.

8.3.1. Цилиндр вращения.

П 1 , то на эту плоскость цилиндр будет проецироваться в виде окружности, а на две другие плоскости проекций в виде прямоугольников, ширина которых равна диаметру этой окружности. Такой цилиндр является проецирующим к П 1 .

Если ось вращения перпендикулярна П 2 , то на П 2 он будет проецироваться в виде окружности, а на П 1 и П 3 в виде прямоугольников.

Аналогичное рассуждение при положении оси вращения, перпендикулярном П 3 (рис.8.3).

Цилиндр Ф пересекается с плоскостями Р, S , L и Г (рис.8.3).

2 ГПЗ, 1 алгоритм (Модуль №3)

Ф ^ П 3

Р, S, L, Г ^ П 2

Ф Ç Р = а (6 5 и )

Ф ^ П 3 Þ Ф 3 = а 3 (6 3 =5 3 и = )

а 2 и а 1 строятся по принадлежности к поверхности Ф .

Ф Ç S = b (5 4 3 )

Ф Ç S = с (2 3 ) Рассуждения аналогичны предыдущему.

Ф Г = d (12 и

Задачи на рисунках 8.4, 8.5, 8.6 решаются аналогично задаче на рис.8.3, так как цилиндр

везде профильно-проецирующий, а отверстия - поверхности проецирующие относительно

П 1 - 2ГПЗ, 1 алгоритм (Модуль №3).

Если оба цилиндра имеют одинаковые диаметры (рис.8.7), то линиями пересечения их будут два эллипса (теорема Монжа, модуль №3). Если оси вращения этих цилиндров лежат в плоскости, параллельной одной из плоскостей проекций, то на эту плоскость эллипсы будут проецироваться в виде пересекающихся отрезков прямых.

8.3.2.Конус вращения

Задачи на рисунках 8.8, 8.9, 8.10, 8.11, 8.12 -2 ГПЗ (модуль №3) решаются по 2 алгоритму, так как поверхность конуса не может быть проецирующей, а секущие плоскости везде фронтально-проецирующие.

На рисунке 8.13 изображен конус вращения (тело), пересеченный двумя фронтально-проецирующими плоскостями Г и L . Линии пересечения строят по 2 алгоритму.

На рисунке 8.14 поверхность конуса вращения пересекается с поверхностью профильно-проецирующего цилиндра.

2 ГПЗ, 2 алгоритм решения (модуль №3), то есть профильная проекция линии пересечения есть на чертеже, она совпадает с профильной проекцией цилиндра. Две другие проекции линии пересечения строят по принадлежности конусу вращения.

Рис.8.14

8.3.3. Сфера.

Поверхность сферы пересекается с плоскостью и со всеми поверхностями вращения с ней, по окружностям. Если эти окружности параллельны плоскостям проекций, то проецируются на них в окружность натуральной величины, а если не параллельны, то в виде эллипса.

Если оси вращения поверхностей пересекаются и параллельны одной из плоскостей проекций, то на эту плоскость все линии пересечения - окружности проецируются в виде отрезков прямых.

На рис. 8.15 - сфера, Г - плоскость, L - цилиндр, Ф - усеченный конус.

S Ç Г = а - окружность;

S Ç L =b - окружность;

S Ç Ф =с - окружность.

Так как оси вращения всех пересекающихся поверхностей параллельны П 2 , то все линии пересечения - окружности на П 2 проецируются в отрезки прямых.

На П 1 : окружность "а" проецируется в истинную величину так как параллельна ей; окружность "b" проецируется в отрезок прямой, так как параллельна П 3 ; окружность"с" проецируется в виде эллипса, который строится по принадлежности сфере.

Сначала строятся точки 1, 7 и 4, которые определяют малую и большую оси эллипса. Затем строит точку 5 , как лежащую на экваторе сферы.

Для остальных точек (произвольных) проводят окружности (параллели) на поверхности сферы и по принадлежности им определяются горизонтальные проекции точек, лежащих на них.

9. Примеры выполнения заданий.

Задача 4 .Построить три вида детали с необходимыми разрезами и нанести размеры.

Задача 5. Построить три вида детали и выполнить необходимые разрезы.

10.Аксонометрия

10.1. Краткие теоретические сведения об аксонометрических проекциях

Комплексный чертеж, составленный из двух или трех проекций, обладая свойствами обратимости, простоты и др., вместе с тем имеет существенный недостаток: ему недостает наглядности. Поэтому, желая дать более наглядное представление о предмете, наряду с комплексным чертежом приводят аксонометрический, широко используемый при описании конструкций изделий, в руководствах по эксплуатации, в схемах сборки, для пояснений чертежей машин, механизмов и их деталей.

Сравните два изображения - ортогональный чертеж и аксонометрический одной и той же модели. На каком изображении легче прочитать форму? Конечно на аксонометрическом изображении. (рис.10.1)

Сущность аксонометрического проецирования состоит в том, что геометрическая фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость проекций, называемую аксонометрическая плоскость проекций, или картинная плоскость.

Если отложить на осях координат x,y и z отрезок l (lx,ly,lz ) и спроецировать на плоскость П ¢ , то получим аксонометрические оси и на них отрезки l"x, l"y, l"z (рис.10.2)

lx, ly, lz - натуральные масштабы.

l = lx = ly = lz

l"x, l"y, l"z - аксонометрические масштабы.

Полученную совокупность проекций на П¢ называют аксонометрией.

Отношение длины аксонометрических масштабных отрезков к длине натуральных масштабных отрезков называют показателем или коэффициентом искажения по осям, которые обозначаются Кx, Ky, Kz.

Виды аксонометрических изображений зависят:

1. От направления проецирующих лучей (они могут быть перпендикулярны П" - тогда аксонометрия будет называться ортогональной (прямоугольной) или расположены под углом не равным 90°- косоугольная аксонометрия).

2. От положения осей координат к аксонометрической плоскости.

Здесь возможны три случая: когда все три оси координат составляют с аксонометрической плоскостью проекций некоторые острые углы (равные и неравные) и когда одна или две оси ей параллельны.

В первом случае применяется только прямоугольное проецирование, (s ^ П") во втором и третьем - только косоугольное проецирование (s П") .

Если оси координат ОХ, ОY,OZ не параллельны аксонометрической плоскости проекций П" , то будут ли они проецироваться на нее в натуральную величину? Конечно, нет. Изображение прямых в общем случае всегда меньше натуральной величины.

Рассмотрим ортогональный чертеж точки А и ее аксонометрическое изображение.

Положение точки определяют три координаты – Х А, Y А, Z A , полученные путем измерения звеньев натуральной ломаной ОА Х - А Х А 1 – А 1 А (рис.10.3).

A" - главная аксонометрическая проекция точки А ;

А - вторичная проекция точки А (проекция проекции точки).

Коэффициентами искажения по осям Х", Y" и Z" будут:

k x = ; k y = ; k y =

В ортогональной аксонометрии эти показатели равны косинусам углов наклона осей координат к аксонометрической плоскости, а следовательно, они всегда меньше единицы.

Их связывает формула

k 2 x + k 2 y + k 2 z = 2 (I)

В косоугольной аксонометрии показатели искажения связаны формулой

k x + k y + k z = 2+ctg a (III)

т.е. любой из них может быть меньше, равен или больше единицы (здесь a- угол наклона проецирующих лучей к аксонометрической плоскости). Обе формулы - вывод из теоремы Польке.

Теорема Польке: аксонометрические оси на плоскости чертежа (П¢) и масштабы на них могут быть выбраны совершенно произвольно.

(Следовательно, аксонометрическая система (О" X" Y" Z" ) в общем случае определяется пятью независимыми параметрами: тремя аксонометрическими масштабами и двумя углами между аксонометрическими осями).

Углы наклона натуральных осей координат к аксонометрической плоскости проекций и направление проецирования могут быть выбраны произвольно, следовательно возможно множество видов ортогональных и косоугольных аксонометрий.

Их разделяют на три группы:

1. Все три показателя искажения равны (k x = k y = k z). Этот вид аксонометрии называют изометрией . 3k 2 =2; k= » 0,82 - теоретический коэффициент искажения. Согласно ГОСТ 2.317-70 можно пользоваться К=1 - приведенный коэффициент искажения.

2. Два каких-либо показателя равны (например, kx=ky kz). Этот вид аксонометрии называется диметрией . k x = k z ; k y = 1/2k x 2 ; k x 2 +k z 2 + k y 2 /4 = 2; k = » 0,94; k x = 0,94; ky = 0,47; kz = 0,94 - теоретические коэффициенты искажения. Согласно ГОСТ 2.317-70 коэффициенты искажения могут быть приведенными - k x =1; k y =0,5; k z =1.

3. 3. Все три показателя различны (k x ¹ k y ¹ k z). Этот вид аксонометрии называют триметрией .

На практике применяют несколько видов как прямоугольной, так и косоугольной аксонометрии с наиболее простыми соотношениями между показателями искажений.

Из ГОСТ2.317-70 и различных видов аксонометрических проекций рассмотрим ортогональные изометрию и диметрию, а также косоугольную диметрию, как наиболее часто применяющиеся.

10.2.1. Прямоугольная изометрия

В изометрии все оси наклонены к аксонометрической плоскости под одним и тем же углом, следовательно угол между осями (120°) и коэффициент искажения будет одинаков. Выбираем масштаб 1: 0,82=1,22; М 1,22: 1.

Для удобства построения пользуются приведенными коэффициентами и тогда на всех осях и линиях им параллельных откладываются натуральные размеры. Изображения таким образом становятся больше, но на наглядности это не отражается.

Выбор вида аксонометрии зависит от формы изображаемой детали. Проще всего строить прямоугольную изометрию, поэтому такие изображения встречаются чаще. Однако, при изображении деталей, включающих четырехугольные призмы и пирамиды, их наглядность уменьшается. В этих случаях лучше выполнять прямоугольную диметрию.

Косоугольную диметрию следует выбирать для деталей, имеющих большую длину при небольшой высоте и ширине (типа вала) или когда одна из сторон детали содержит наибольшее число важных особенностей.

В аксонометрических проекциях сохраняются все свойства параллельных проекций.

Рассмотрим построение плоской фигуры АВСDE .

Прежде всего построим оси в аксонометрии. На рис.10.4 представлено два способа построения аксонометрических осей в изометрии. На рис.10.4 а показано построение осей при помощи циркуля, а на рис.10.4б - построение при помощи равных отрезков.

Рис.10.5

Фигура АВСDЕ лежит в горизонтальной плоскости проекций, которая ограничена осями ОХ и ОY (рис.10.5а). Строим эту фигуру в аксонометрии (рис.10.5б).

Каждая точка, лежащая в плоскости проекций, сколько имеет координат? Две.

Точка, лежащая в горизонтальной плоскости - координаты Х и Y .

Рассмотрим построение т.А . С какой координаты начнем построение? С координаты Х А .

Для этого замеряем на ортогональном чертеже величину ОА Х и откладываем на оси Х" , получим точку А Х " . А Х А 1 какой оси параллельна? Оси Y . Значит из т. А Х " проводим прямую параллельную оси Y " и откладываем на ней координату Y A . Полученная точка А" и будет аксонометрической проекцией т.А .

Аналогично строятся все остальные точки. Точка С лежит на оси ОY , значит имеет одну координату.

На рисунке 10.6 задана пятигранная пирамида, у которой основанием является этот же пятиугольник АВСDЕ. Что нужно достроить, чтобы получилась пирамида? Надо достроить точку S , которая является ее вершиной.

Точка S - точка пространства, поэтому имеет три координаты Х S , Y S и Z S . Сначала строится вторичная проекция S (S 1), а затем все три размера переносятся с ортогонального чертежа. Соединив S" c A", B", C", D" и E ", получим аксонометрическое изображение объемной фигуры - пирамиды.

10.2.2. Изометрия окружности

Окружности проецируются на плоскость проекций в натуральную величину, когда они параллельны этой плоскости. А так как все плоскости наклонены к аксонометрической плоскости, то окружности, лежащие на них, будут проецироваться на эту плоскость в виде эллипсов. Во всех видах аксонометрий эллипсы заменяются овалами.

При изображении овалов надо, прежде всего, обратить внимание на построение большой и малой оси. Начинать надо с определения положения малой оси, а большая ось всегда ей перпендикулярна.

Существует правило: малая ось совпадает с перпендикуляром к этой плоскости, а большая ось ей перпендикулярна или направление малой оси совпадает с осью, не существующей в этой плоскости, а большая ей перпендикулярна (рис.10.7)

Большая ось эллипса перпендикулярна той координатной оси, которая отсутствует в плоскости окружности.

Большая ось эллипса равна 1,22 ´ d окр; малая ось эллипса равна 0,71 ´ d окр.

На рисунке 10.8 в плоскости окружности отсутствует ось Z Z ".

На рисунке 10.9 в плоскости окружности отсутствует ось Х , поэтому большая ось перпендикулярна оси Х ".

А теперь рассмотрим, как вычерчивается овал в одной из плоскостей, например, в горизонтальной плоскости XY . Существует множество способов построения овала, познакомимся с одним из них.

Последовательность построения овала следующая (рис.10.10):

1. Определяется положение малой и большой оси.

2.Через точку пересечения малой и большой оси проводим линии, параллельные осям X" и Y" .

3.На этих линиях, а также на малой оси, из центра радиусом, равным радиусу заданной окружности, откладываем точки 1 и 2, 3 и 4, 5 и 6 .

4. Соединяем точки 3 и 5, 4 и 6 и отмечаем точки пересечения их с большой осью эллипса (01 и 02 ). Из точки 5 , радиусом 5-3 , и из точки 6 , радиусом 6-4 , проводим дуги между точками 3 и 2 и точками 4 и 1 .

5. Радиусом 01-3 проводим дугу, соединяющую точки 3 и 1 и радиусом 02-4 - точки 2 и 4 . Аналогично строятся овалы в других плоскостях (рис.10.11).

Для простоты построения наглядного изображения поверхности ось Z может совпадать с высотой поверхности, а оси X и Y с осями горизонтальной проекции.

Чтобы построить точку А , принадлежащую поверхности надо построить ее три координаты X A , Y A и Z A . Точка на поверхности цилиндра и других поверхностях строится аналогично (рис.10.13).

Большая ось овала перпендикулярна оси Y ".

При построении аксонометрии детали, ограниченной несколькими поверхностями, следует придерживаться следующей последовательности:

Вариант 1.

1. Деталь мысленно разбивается на элементарные геометрические фигуры.

2. Вычерчивается аксонометрия каждой поверхности, линии построения сохраняются.

3. Строится вырез 1/4 детали, чтобы показать внутреннюю конфигурацию детали.

4. Наносится штриховка по ГОСТ 2.317-70.

Рассмотрим пример построения аксонометрии детали, внешний контур которой состоит из нескольких призм, а внутри детали цилиндрические отверстия разных диаметров.

Вариант 2. (Рис. 10.5)

1. Строится вторичная проекция детали на плоскости проекций П.

2. Откладываются высоты всех точек.

3. Строится вырез 1/4 части детали.

4. Наносится штриховка.

Для данной детали более удобным для построения будет вариант 1.

10.3. Этапы выполнения наглядного изображения детали.

1. Деталь вписывается в поверхность четырехугольной призмы, размеры которой равны габаритным размерам детали. Эта поверхность называется обертывающей.

Выполняется изометрическое изображение этой поверхности. Обертывающая поверхность строится по габаритным размерам (рис.10.15 а ).

Рис. 10.15 а

2. Из этой поверхности вырезаются выступы, расположенные на верхней части детали по оси Х и строится призма высотой 34мм, одним из оснований которой будет верхняя плоскость обертывающей поверхности (рис.10.15б ).

Рис. 10.15б

3. Из оставшейся призмы вырезается нижняя призма с основаниями 45 ´35 и высотой 11мм (рис.10.15в ).

Рис. 10.15в

4. Строятся два цилиндрических отверстия, оси которых лежат на оси Z . Верхнее основание большого цилиндра лежит на верхнем основании детали, второе ниже на 26 мм. Нижнее основание большого цилиндра и верхнее основание малого лежат в одной плоскости. Нижнее основание малого цилиндра строится на нижнем основании детали (рис.10.15г ).

Рис. 10.15г

5. Выполняется вырез 1/4 части детали, чтобы открыть внутренний контур ее. Разрез выполняется двумя взаимно перпендикулярными плоскостями, то есть по осям Х и Y (рис.10.15д ).

Рис.10.15д

6. Выполняется обводка сечений и всей оставшейся части детали, а вырезанная часть убирается. Невидимые линии стираются, а сечения заштриховываются. Плотность штриховки должна быть такой же, как на ортогональном чертеже. Направление штриховых линий показано на рис10.15е соответствии с ГОСТ 2.317-69.

Линиями штриховки будут линии, параллельные диагоналям квадратов, лежащих в каждой координатной плоскости, стороны которых параллельны аксонометрическим осям.

Рис.10.15е

7. Существует особенность штриховки ребра жесткости в аксонометрии. По правилам

ГОСТ 2.305-68 в продольном разрезе ребро жесткости на ортогональном чертеже не

заштриховывается, а в аксонометрии заштриховывается.На рис.10.16 показан пример

штриховки ребра жесткости.

10.4Прямоугольная диметрия.

Прямоугольную диметрическую проекцию можно получить путем поворота и наклона координатных осей относительно П ¢ так, чтобы показатели искажения по осям X" и Z" приняли равное значение, а по оси Y" - вдвое меньшее. Показатели искажения "k x " и "k z " будут равны 0,94, а "k y "- 0,47.

На практике пользуются приведенными показателями, т.е. по осям X " и Z" откладывают натуральные размеры, а по оси Y "- в 2 раза меньше натуральных.

Ось Z" обычно располагают вертикально, ось X" - под углом 7°10¢ к горизонтальной линии, а ось Y" -под углом 41°25¢ к этой же линии (рис.12.17).

1. Строится вторичная проекция усеченной пирамиды.

2. Строятся высоты точек 1,2,3 и 4.

Проще всего строить ось Х ¢ , отложив на горизонтальной линии 8 равных частей и вниз по вертикальной линии 1 такую же часть.

Чтобы построить ось Y" под углом 41°25¢ , надо на горизонтальной линии отложить 8 частей, а на вертикальной 7 таких же частей (рис.10.17).

На рисунке 10.18 изображена усеченная четырехугольная пирамида. Чтобы построение ее в аксонометрии было проще, ось Z должна совпадать с высотой, тогда вершины основания ABCD будут лежат на осях Х и Y (А и С Î х , В и D Î y ). Сколько координат имеют точки 1 и? Две. Какие? Х и Z .

Эти координаты откладываются в натуральную величину. Полученные точки 1¢ и 3¢ соединяются с точками А¢ и С¢ .

Точки 2 и 4 имеют две координаты Z и Y . Так как высота у них одинаковая, то координата Z откладывается на оси Z" . Через полученную точку 0 ¢ проводится линия, параллельная оси Y , на которой по обе стороны от точки откладываются расстояние 0 1 4 1 уменьшенное в два раза.

Полученные точки 2 ¢ и 4 ¢ соединяются с точками В ¢ и D" .

10.4.1. Построение окружностей в прямоугольной диметрии.

Окружности, лежащие на плоскостях координат в прямоугольной диметрии, также как и в изометрии, будут изображаться в виде эллипсов. Эллипсы, расположенные на плоскостях между осями Х" и Y",Y" и Z" в приведенной диметрии будут иметь большую ось, равную 1,06d, а малую - 0,35d, а в плоскости между осями X" и Z" - большую ось тоже 1,06d, а малую 0,95d (рис.10.19).

Эллипсы заменяются четырехцентовыми овалами, как в изометрии.

10.5.Косоугольная диметрическая проекция (фронтальная)

Если расположить координатные оси Х и Y параллельно плоскости П¢, то показатели искажения по этим осям станут равным единице (к = т =1). Показатель искажения по оси Y обычно принимают равным 0,5. Аксонометрические оси X " и Z" составят прямой угол, ось Y" обычно проводят как биссектрису этого угла. Ось Х может быть направлена как вправо от оси Z ", так и влево.

Предпочтительно пользоваться правой системой, так как удобнее изображать предметы в рассеченном виде. В этом виде аксонометрии хорошо чертить детали, имеющие форму цилиндра или конуса.

Для удобства изображения этой детали ось Y надо совместить с осью вращения поверхностей цилиндров. Тогда все окружности будут изображаться в натуральную величину, а длина каждой поверхности будет уменьшаться в два раза (рис.10.21).

11.Наклонные сечения.

При выполнении чертежей деталей машин приходится нередко применять наклонные сечения.

При решении таких задач необходимо прежде всего уяснить: как должна быть расположена секущая плоскость и какие поверхности участвуют в сечении для того, чтобы деталь читалась лучше. Рассмотрим примеры.

Дана четырехгранная пирамида, которая рассекается наклонной фронтально-проецирующей плоскостью А-А (рис.11.1). Сечением будет четырехугольник.

Сначала строим проекции его на П 1 и на П 2 . Фронтальная проекция совпадает с проекцией плоскости, а горизонтальную проекцию четырехугольника строим по принадлежности пирамиде.

Затем строим натуральную величину сечения. Для этого вводится дополнительная плоскость проекций П 4 , параллельная заданной секущей плоскости А-А , на нее проецируем четырехугольник, а затем совмещаем его с плоскостью чертежа.

Эта четвертая основная задача преобразования комплексного чертежа (модуль №4, стр.15 или задача №117 из рабочей тетради по начертательной геометрии).

Построения выполняются в следующей последовательности (рис.11.2):

1. 1.На свободном месте чертежа проводим осевую линию, параллельную плоскости А-А .

2. 2.Из точек пересечения ребер пирамиды с плоскостью проводим проецирующие лучи, перпендикулярно секущей плоскости. Точки 1 и 3 будут лежать на линии, расположенной перпендикулярно осевой.

3. 3.Расстояние между точками 2 и 4 переносится с горизонтальной проекции.

4. Аналогично строится истинная величина сечения поверхности вращения - эллипс.

Расстояние между точками 1 и 5 -большая ось эллипса. Малую ось эллипса надо строить путем деления большой оси пополам (3-3 ).

Расстояние между точками 2-2, 3-3, 4-4 переносятся с горизонтальной проекции.

Рассмотрим более сложный пример, включающий многогранные поверхности и поверхности вращения (рис.11.3)

Задана четырехгранная призма. В ней расположены два отверстия: призматическое, расположенное горизонтально и цилиндрическое, ось которого совпадает с высотой призмы.

Секущая плоскость фронтально-проецирующая, поэтому фронтальная проекция сечения совпадает с проекцией этой плоскости.

Четырехугольная призма проецирующая к горизонтальной плоскости проекций, а значит и горизонтальная проекция сечения тоже есть на чертеже, она совпадает с горизонтальной проекцией призмы.

Натуральная величина сечения, в которое попадают обе призмы и цилиндр, строим на плоскости, параллельной секущей плоскости А-А (рис.11.3).

Последовательность выполнения наклонного сечения:

1. Проводится ось сечения, параллельно секущей плоскости, на свободном поле чертежа.

2. Строится сечение наружной призмы: длина его переносится с фронтальной проекции, а расстояние между точками с горизонтальной.

3. Строится сечение цилиндра - часть эллипса. Сначала строятся характерные точки, определяющие длину малой и большой оси (5 4 , 2 4 -2 4 ) и точки, ограничивающие эллипс (1 4 -1 4 ) , затем дополнительные точки (4 4 -4 4 и 3 4 -3 4).

4. Строится сечение призматического отверстия.

5. Наносится штриховка под углом 45° к основной надписи, если она не совпадает с линиями контура, а если совпадает, то угол штриховки может быть 30° или 60°. Плотность штриховки на сечении такая же, как на ортогональном чертеже.

Наклонное сечение можно поворачивать. При этом обозначение сопровождается знаком . Также разрешается показать половину фигуры наклонного сечения, если она симметрична. Подобное расположение наклонного сечения показано на рис.13.4. Обозначения точек при построении наклонного сечения можно не ставить.

На рис.11.5 дано наглядное изображение заданной фигуры с сечением плоскостью А-А .

Контрольные вопросы

1. Что называют видом?

2. Как получают изображение предмета на плоскости?

3.Какие названия присвоены видам на основных плоскостях проекций?

4.Что называют главным видом?

5.Что называют дополнительным видом?

6. Что называют местным видом?

7.Что называют разрезом?

8. Какие обозначения и надписи установлены для разрезов?

9. В чем отличие простых разрезов от сложных?

10.Какая соблюдается условность при выполнении ломаных разрезов?

11. Какой разрез называется местным?

12. При каких условиях допускается совмещать половину вида и половину разреза?

13. Что называют сечением?

14. Как располагают сечения на чертежах?

15. Что называют выносным элементом?

16. Как упрощенно показывают на чертеже повторяющиеся элементы?

17. Как условно сокращают на чертеже изображение предметов большой длины?

18. Чем отличаются аксонометрические проекции от ортогональных?

19. Каков принцип образования аксонометрических проекций?

20. Какие установлены виды аксонометрических проекций?

21. Каковы особенности изометрии?

22. Каковы особенности диметрии?

Библиографический список

1. Суворов, С.Г.Машиностроительное черчение в вопросах и ответах: (справочник)/ С.Г.Суворов, Н.С.Суворова.-2-е изд. перераб. и доп. - М.: Машиностроение,1992.-366с.

2. Федоренко В.А. Справочник по машиностроительному черчению/ В.А.Федоренко, А.И.Шошин,- Изд.16-стер.;м Перепеч. с 14-го изд.1981г.-М.: Альянс,2007.-416с.

3.Боголюбов, С.К.Инженерная графика: Учебник для сред. спец. учеб. заведений по спец. техн. профиля/ С.К.Боголюбов.-3-е изд., испр. и доп.-М.: Машиностроение, 2000.-351с.

4.Вышнепольский, И.С.Техническое черчение е. Учеб. для нач. проф. образования/ И.С.Вышнепольский.-4-е изд., перераб. и доп.; Гриф МО.- М.: Высш. шк.: Академия, 2000.-219с.

5. Левицкий, В.С.Машиностроительное черчение и автоматизация выполнения чертежей: учеб. для втузов/В.С.Левицкий.-6-е изд., перераб. и доп.; Гриф МО.-М.: Высш. шк., 2004.-435с.

6. Павлова, А.А. Начертательная геометрия: учеб. для вузов/ А.А. Павлова-2-е изд., перераб. и доп.; Гриф МО.- М.: Владос, 2005.-301с.

7. ГОСТ 2.305-68*. Изображения: виды, разрезы, сечения/Единая система конструкторской документации. - М.: Изд-во стандартов, 1968.

8. ГОСТ 2.307-68. Нанесение размеров и предельных отклонений/Единая система

конструкторской документации. - М.: Изд-во стандартов,1968.

Все точки окружности, проецируемой на плоскость, обязаны быть параллельны этой плоскости. Потому что все плоскости в изометрической проекции находятся под наклоном, окружность принимает форму эллипса. Для облегчения работы эллипсы в изометрической проекции заменяются овалами.

Вам понадобится

  • – карандаш;
  • – угольник либо линейка;
  • – циркуль;
  • – транспортир.

Инструкция

1. Построение овала в изометрии начинается с определения расположения его малой и крупной оси, которые пересекаются в его центре. Следственно вначале определите расположение центра окружности на надобной плоскости изометрической проекции. Обозначьте центр окружности точкой O.

2. Начертите малую ось овала. Малая ось параллельна отсутствующей в плоскости оси изометрической проекции и проходит через центр окружности O. Скажем, в плоскости ZY малая ось параллельна оси X.

3. С поддержкой угольника либо линейки с транспортиром постройте огромную ось овала. Она перпендикулярна малой оси овала и пересекает ее в центре окружности O.

4. Проведите через центр окружности O две линии параллельные осям плоскости, в которой строится проекция.

5. С поддержкой циркуля подметьте на малой оси овала и на линиях параллельных осям проекции по две точки в противоположных от центра сторонах. Расстояние до всякой точки на всех линиях откладывается из центра O и равно радиусу проецируемой окружности. Каждого у вас должно получиться 6 точек.

6. Обозначьте на малой оси овала точки A и B. Точка A располагается ближе к началу координат плоскости, чем точка B. Предисловие координат плоскости соответствует точке пересечения осей изометрической проекции на чертеже.

7. Обозначьте подмеченные точки на линиях параллельных осям проекции как точки C, D, E и F. Точки C и D обязаны располагаться на одной линии. Точка C располагается ближе к началу координат оси проекции, которой параллельна выбранная линия. Схожие правила действуют для точек E и F, которые обязаны быть расположены на 2-й линии.

8. Объедините точки A и D, а также точки BC отрезками, которые обязаны пересекать крупную ось овала. Если получившиеся отрезки не пересекают огромную ось, обозначьте точку E как точку C, а точку C как точку E. Подобно измените обозначение точки F на D, а точки D на F. И объедините получившиеся точки A и D, B и C отрезками.

9. Обозначьте точки, в которых отрезки AD и BC пересекают огромную ось овала как G и H.

10. Задайте циркулю радиус, тот, что равен длине отрезка CG, и начертите дугу между точками C и F. Центр дуги должен быть размещен в точке G. Аналогичным методом начертите дугу между точками D и E.

11. Из точки A начертите дугу радиусом равным длине отрезка AD между точками F и D. Аналогичным методом начертите вторую дугу между точками C и E. Построение овала на первой плоскости готово.

12. Повторите аналогичным образом построение овалов для остальных плоскостей изометрической проекции.

Соотношение углов и плоскостей всякого предмета визуально меняется в зависимости от расположения объекта в пространстве. Именно следственно деталь на чертеже обыкновенно выполняется в 3 ортогональных проекциях, к которым добавлено пространственное изображение. Традиционно это изометрическая проекция. При ее выполнении не применяются точки схода, как при построении общей перспективы. Следственно размеры по мере удаления от наблюдателя не меняются.

Вам понадобится

  • – линейка;
  • – циркуль;
  • – лист бумаги.

Инструкция

1. Изометрическая проекция строится в системе 3 осей – X, Y и Z. Точку их пересечения пометьте как О. Ось ОZ неизменно идет сурово вертикально. Остальные располагаются к ней под некоторым углом.

2. Определите направления осей. Для этого начертите из точки О окружность произвольного радиуса. Центральный угол ее равен 360?. Поделите окружность на 3 равные часть, использовав в качестве базового радиуса ось ОZ. При этом угол всякого сектора будет равен 120?. Два новых радиуса как раз и представляют собой необходимые вам оси ОX и OY.

3. Представьте себе, как будет выглядеть окружность, если ее разместить к зрителю под некоторым углом. Она превратится в эллипс, у которого есть огромный и малый диаметры.

4. Определите расположение диаметров. Поделите углы между осями напополам. Объедините точку О с этими новыми точками тонкими линиями. Расположение центра окружности зависит от условий задания. Подметьте его точкой и проведите к ней в обе стороны перпендикуляр. Эта линия определит расположение большого диаметра.

5. Вычислите размеры диаметров. Они зависят от того, применяете вы показатель искажения либо нет. В изометрии данный показатель по каждым осям составляет 0,82, но достаточно зачастую его округляют и принимают за 1. С учетом искажения огромный и малый диаметры эллипса составляют соответственно 1 и 0,58 от начального. Без использования показателя эти размеры составляют 1, 22 и 0, 71 диаметра изначальной окружности.

6. Поделите весь диаметр напополам и отложите от центра окружности огромные и малые радиусы. Начертите эллипс.

Видео по теме

Обратите внимание!
Для создания объемного изображения дозволено возвести не только изометрическую, но и диметрическую проекцию, а также фронтальную либо линейную перспективу. Проекции применяются при построении чертежей деталей, а перспективы – в основном в архитектуре. Окружность в диметрии тоже изображается как эллипс, но там другое расположение осей и другие показатели искажения. При выполнении разных видов перспектив учитываются метаморфозы размеров при удалении от наблюдателя.

Окружность еще древние греки считали самой идеальной и слаженной из всех геометрических фигур. В их ряду окружность является примитивной косой, а ее безупречность заключается в том, что все составляющие ее точки располагаются на идентичном расстоянии от ее центра, вокруг которого она “скользит сама по себе”. Неудивительно, что методы построения окружности начали волновать математиков еще в древности.

Вам понадобится

  • * циркуль;
  • * бумага;
  • * лист бумаги в клеточку;
  • * карандаш;
  • * веревка;
  • * 2 колышка.

Инструкция

1. Самый легкой и знаменитый с древности и по сей день – построение окружности при помощи особого инструмента – циркуля (от лат. “circulus” – круг, окружность). Для такого построения сперва надобно подметить центр грядущей окружности – скажем, пересечением 2х штрихпунктирных линий под прямым углом, и выставить шаг циркуля, равный радиусу грядущей окружности. Дальше установите ножку циркуля в подмеченный центр и, поворачивая ножку с грифелем вокруг него, проведите окружность.

2. Без циркуля окружность возвести тоже допустимо. Для этого понадобится карандаш и лист бумаги в клеточку. Подметьте предисловие грядущей окружности – точку А и запомните примитивный алгорифм: три – один, один – один, один – три. Для построения первой четверти окружности продвиньтесь из точки А на три клетки вправо и на одну вниз и зафиксируйте точку В. Из точки В – на одну клетку вправо и одну вниз и подметьте точку С. И из точки С – на одну клетку вправо и три вниз в точку D. Четверть окружности готова. Сейчас для комфорта дозволено развернуть лист супротив часовой стрелки так, дабы точка D оказалась вверху, и по тому же алгорифму достроить оставшиеся 3/4 окружности.

3. Но что делать, если нам необходимо возвести окружность большего размера, чем разрешает тетрадный лист и шаг циркуля – скажем, для игры? Тогда нам понадобится веревочка длины, равной радиусу желаемой окружности, и 2 колышка. Колышки привяжите к концам веревки. Один из них воткните в землю, а иным при натянутой веревке начертите окружность.Абсолютно допустимо, что одним из этих методов построения окружности воспользовался и изобретатель колеса – по сей день одного из самых талантливых изобретений общества.

Видео по теме

Построение изометрической проекции детали разрешает получить максимально подробное представление о пространственных колляциях объекта изображения. Изометрия с вырезом части детали добавочно к внешнему виду показывает внутреннее устройство предмета.

Вам понадобится

  • – комплект чертежных карандашей;
  • – линейка;
  • – угольники;
  • – транспортир;
  • – циркуль;
  • – ластик.

Инструкция

1. Для построения чертежа в изометрии выберите такое расположение изображаемой детали либо устройства, при котором будут максимально видны все пространственные колляции.

2. Позже выбора расположения решите, какой вид изометрии вы будете исполнять. Существует два вида изометрии : прямоугольная изометрия и горизонтальная косоугольная изометрия (либо военная перспектива).

3. Начертите оси тонкими линиями так, дабы изображение разместилось по центру листа. В прямоугольной изометрии углы между осями составляют сто двадцать градусов. В горизонтальной косоугольной изометрии углы между осями X и Y составляют девяносто градусов. А между осями X и Z; Y и Z - сто тридцать пять градусов.

4. Начните исполнять изометрию с верхней поверхности изображаемой детали. От углов горизонтальных поверхностей проведите вниз вертикальные линии и отложите на этих линиях соответствующие линейные размеры с чертежа детали. В изометрии линейные размеры по каждому трем осям остаются кратными единице. Ступенчато объедините полученные точки на вертикальных линиях. Внешний силуэт детали готов. Исполните изображения имеющихся на гранях детали отверстий, пазов и пр.

5. Помните, что при изображении предметов в изометрии видимость криволинейных элементов будет искажаться. Окружность в изометрии изображается как эллипс. Расстояние между точками эллипса по осям изометрии равно диаметру окружности, а оси эллипса не совпадают с осями изометрии .

6. Если у предмета имеются спрятанные полости либо трудное внутреннее строение, исполните изометрическую проекцию с вырезом части детали. Вырез может быть простым либо ступенчатым в зависимости от трудности детали.

7. Все действия обязаны выполняться с поддержкой чертежных инструментов - линейки, карандаша, циркуля и транспортира. Используйте несколько карандашей различной твердости. Крепкий - для тонких линий, твердо-мягкий - для пунктирных и штрихпунктирных линий, мягкий - для основных линий. Не позабудьте начертить и заполнить основную надпись и рамку в соответствии с ГОСТ. Также построение изометрии дозволено исполнять в специализированном программном обеспечении, таком как Компас, AutoCAD.

Эллипс – это изометрическая проекция окружности. Овал строят по точкам и обводят по лекалам либо фигурным линейкам. Проще каждого возвести эллипс в изометрии , вписав фигуру в ромб, напротив изометрическую проекцию квадрата.

Вам понадобится

  • – линейка;
  • – угольник;
  • – карандаш;
  • – бумага для черчения.

Инструкция

1. Разглядим, как возвести эллипс в изометрии , лежащий в горизонтальной плоскости. Постройте перпендикулярные оси X и Y. Точку пересечения обозначьте O.

2.

3. От точки O отложите на осях отрезки, равные радиусу окружности. Обозначенные точки обозначьте цифрами 1, 2, 3, 4. Через эти точки проведите параллельные осям прямые.

4. Проведите дугу из вершины тупого угла, объединив точки 1 и 4. Подобно объедините точки 2 и 3, проведя дугу из вершины D. Объедините точки 1,2 и 3,4 из центров мелких дуг. Таким образом построен эллипс в изометрии , вписанный в ромб.

5. 2-й метод возвести эллипс в изометрии заключается в отображении окружности с показателем искажения. Начертите оси X и Y, из точки O проведите две вспомогательные окружности. Диаметр внутренней окружности равен малой оси эллипса, внешней – крупной оси.

6. В одной четверти постройте вспомогательные лучи, исходящие из центра эллипса. Число лучей произвольное, чем огромнее, тем вернее чертеж. В нашем случае довольно будет 3 вспомогательных лучей.

7. Получите добавочные точки эллипса. Из точки пересечения луча с малой окружностью проведите горизонтальную линию параллельную оси X в сторону внешней окружности. Из верхней точки, лежащей на пересечении луча и огромный окружности, опустите перпендикуляр.

8. Полученную точку обозначьте цифрой 2. Повторите операции по нахождению 3 и 4 точек эллипса. Точка 1 находится на пересечении оси Y и малой окружности, точка 5 на оси X в месте прохождения внешней окружности.

9. Проведите кривую через полученные 5 точек эллипса. В точках 1 и 5 кривая сурово пропорциональна осям. Проведите схожие построения эллипса в изометрии на оставшихся? чертежа.

Все объекты окружающей реальности существуют в трехмерном пространстве. На чертежах их доводится изображать в двухмерной системе координат, и это не дает зрителю довольного представления о том, как предмет выглядит в действительности. Следственно в техническом черчении используются проекции, разрешающие передать объем. Одна из них именуется изометрической.

Вам понадобится

  • – бумага;
  • – чертежные принадлежности.

Инструкция

1. Построение изометрической проекции начните с расположения осей. Одна из них неизменно будет вертикальной, и на чертежах она традиционно обозначается как ось Z, Исходную ее точку принято обозначать как О. Продолжите ось ОZ вниз.

2. Расположение остальных 2-х осей дозволено определить двумя методами, в зависимости от того, какие чертежные инструменты у вас есть. Если у вас имеется транспортир, отложите от оси ОZ в обе стороны углы, равные 120?. Проведите оси X и Y.

3. Если в вашем распоряжении только циркуль, начертите окружность произвольного радиуса с центром в точке О. Продолжите ось ОZ до ее второго пересечения с окружностью и поставьте точку, скажем, 1. Разведите ножки циркуля на расстояние, равное радиусу. Проведите дугу с центром в точке 1. Подметьте точки ее пересечения с окружностью. Они и обозначают направления осей Х и Y. В левую сторону от оси Z отходит ось Х, вправо – Y.

4. Постройте изометрическую проекцию плоской фигуры. Показатели искажения в изометрии по каждом осям принимаются за 1. Дабы возвести квадрат со стороной а, отложите это расстояние от точки О по осям Х и Y и сделайте засечки. Проведите через полученные точки прямые, параллельные обеим указанным осям. Квадрат в этой проекции выглядит как параллелограмм с углами в 120? и 60?.

5. Дабы возвести треугольник, нужно продолжить ось Х так, дабы новая часть луча расположилась между осями Z м Y. Поделите сторону треугольника напополам и отложите полученный размер от точки О по оси Х в обе стороны. По оси Y отложите высоту треугольника. Объедините концы отрезка, расположенного на оси X, с полученной точкой на оси Y.

6. Схожим методом строится в изометрической проекции и трапеция. На оси Х в одну и в иную сторону от точки О отложите половину основания этой геометрической фигуры, а по оси Y – высоту. Через засечки на оси Y проведите прямую, параллельную оси Х, и отложите на ней в обе стороны половину второго основания. Объедините полученные точки с засечками на оси Х.

7. Окружность в изометрии выглядит как эллипс. Ее дозволено возвести как с учетом показателя искажений, так и без. В первом случае огромный диаметр будет равен диаметру самой окружности, а малый составит 0,58 от него. При построении без контроля этого показателя оси эллипса будут равняться соответственно 1,22 и 0,71 диаметра начальной окружности.

8. Плоские фигуры могут располагаться в пространстве как горизонтально, так и вертикально. За основу дозволено брать всякую ось, тезисы построения остаются теми же, что и в первом случае.

Полезный совет
Объемный объект трудной формы проанализируйте и мысленно поделите на больше примитивные, отличнее каждого всякую строну представить в виде близкой по форме геометрической фигуры. При этом может появиться надобность откладывать размеры не на самих осях, а на параллельных им линиях. Расстояния между этими линиями зависят от формы детали. Скажем, дозволено по одной из осей отложить расстояние от края детали до выемки либо выступа и провести линии, параллельные двум иным осям. Изометрическая проекция фрагмента в этом случае строится не на стержневой координатной сетке, а на дополнительной.

Окружность земли принято оценивать по самой длинной параллели – экватору. Впрочем последние итоги измерений этого параметра показывают, что общепризнанное представление о нем не неизменно оказывается правильным.


Вопрос о том, чему равна величина окружности планеты Земля, волновал ученых дюже давным-давно. Так, первые измерения этого параметра были осуществлены еще в Старинной Греции.

Измерение окружности

О том, что наша планета имеет форму шара, ученым, занимающимся изысканиями в области геологии, было знаменито довольно давным-давно. Именно следственно первые измерения величины окружности земной поверхности касались самой длинной параллели Земли – экватора. Эту величину, предполагали ученые, дозволено считать верной для всякого иного метода измерения. Скажем, считалось, что если измерить окружность планеты по самому длинному меридиану, полученная цифра будет верно такой же.Такое суждение существовало вплотную до XVIII столетия. Впрочем ученые ведущего научного учреждения того времени – Французской академии – придерживались суждения о том, что эта догадка неверна, и форма, которую имеет планета, не вовсе положительна. Следственно, по их суждению, длины окружности по самому длинному меридиану и по самой длинной параллели будут различаться.В подтверждение в 1735 и 1736 годах были предприняты две научные экспедиции, которые подтвердили истинность этого предположения. Позднее была установлена и величина отличия между этими двумя длинами – она составила 21,4 километра.

Длина окружности

В реальное время длина окружности планеты Земля многократно измерена теснее не посредством экстраполяции длины того либо другого отрезка земной поверхности на ее полную величину, как это делалось прежде, а с использованием современных высокоточных спецтехнологий. Вследствие этому удалось установить точную длину окружности по самому длинному меридиану и самой длинной параллели, а также уточнить величину отличия между этими параметрами.Так, на сегодняшний день в научном сообществе в качестве официальной величины окружности планеты Земля по экватору, то есть особенно длинной параллели, принято приводить цифру, составляющую 40075,70 километра. При этом подобный параметр, измеренный по самому длинному меридиану, то есть длина окружности, проходящей через земные полюсы, составляет 40008,55 километра. Таким образом, разница между длинами окружностей составляет 67,15 километра, и экватор является самой длинной окружностью нашей планеты. Помимо того, такое отличие обозначает, что один градус географического меридиана несколько короче, чем один градус географической параллели.

Публикации по теме