Покрытие металла медью в домашних условиях. Гальванопластика. Технология меднения в домашних условиях

Когда речь идет о гальванотехнике, сразу же на ум приходят такие технологические операции, как хромирование и цинкование металлоизделий. Но если задать вопрос, а что представляет собой гальваностегия, то ответит не каждый – проверено. Хотя ничего сверхнового данный термин не подразумевает.

Проще говоря, это методика покрытия тончайшим слоем металла любого материала, будь-то сталь, алюминий, древесина или пластик. С тем, как произвести меднение какого-либо образца в домашних условиях, мы и разберемся.

Общая информация

Меднение – методика отчасти более универсальная, чем то же цинкование. Для каких целей оно проводится?

  • Защита образцов от цементации перед их раскроем способом резания, а также от коррозии.
  • Устранение дефектов на поверхностях деталей, когда иные способы неприемлемы или трудны в реализации. К примеру, если основа характеризуется сложным рельефом.
  • Декорирование изделий.
  • Создание копий образцов из других материалов.
  • Подготовка деталей из стали к , серебрению, золочению. В подобных случаях меднение является лишь одним из этапов работы по поверхностной обработке материала.
  • Для создания сегментов «под пайку».

Вряд ли читателя заинтересуют такие нюансы, как классификация меди (рафинированная, бескислородная, общего применения), различные варианты растворов, использующихся при меднении, характеристики материалов и подобные вещи. Далее рассмотрены лишь простейшие методы нанесения Cu на любую поверхность, которые несложно организовать в домашних условиях, без каких-либо сложностей и финансовых затрат.

Меднение в электролите

Такая методика подходит лишь для покрытия слоем Cu металлических деталей. По сути, технология мало чем отличается от того же цинкования в домашних условиях.

Подготовка

Оборудование понадобится простейшее:

Ванночка (емкость) стеклянная. Ее вместительность определяется габаритами обрабатываемой детали. Даже литровая банка или стакан – как варианты.

Медные электроды. Как правило, используются два. Это позволяет более качественно покрыть заготовку слоем со всех сторон и упрощает сам процесс. По ходу работы не придется периодически менять положение детали относительно электрода. Что именно использовать, зависит от конкретной ситуации – пластины из меди, куски толстой проволоки. Это непринципиально.

Источник тока и соединительные провода. Достаточно даже маломощного блока питания, на 6 – 8 В. Если в БП нет встроенного амперметра и не предусмотрена плавная регулировка напряжения, то придется использовать соответствующий прибор и реостат как отдельные элементы электрической цепи. Примерная схема, которую собирают для меднения деталей, показана на рисунке.

Электролит. Можно использовать покупной раствор, хотя придется и поискать. Если же его готовить самому, то на 100 мл воды дистиллированной понадобится серная кислота (3 мл) и медный купорос (20 г) – не дефицит.

Процесс меднения

  • Деталь зачищается от наслоений. При необходимости – протравливается, погружается в специальные растворы для удаления инородных фракций. Что именно использовать, зависит от степени и вида загрязнения.
  • Обезжиривание образца. Самый простой способ – окунуть в раствор соды (горячий), а потом промыть водой для удаления ее остатков.
  • В емкость наливается приготовленный состав и помещаются электроды. Уровень раствора выбирается так, чтобы он полностью покрывал обрабатываемую деталь.
  • Погружение изделия. Оно подвязывается на проводе, который соединяется с «–» БП. Необходимо проследить, чтобы заготовка не касалась стенок ванночки, ее дна и электродов.

После включения напряжения величина тока постепенно повышается до расчетного значения, и в таком режиме обработка осуществляется в течение ⅓ часа (время ориентировочное). Если меднение проводится впервые, то следует контролировать данный процесс. О том, что деталь можно вынимать из емкости, судят по оттенку ее поверхности и равномерности покрытия (отсутствию необработанных участков, раковин, вкраплений и так далее).

Остается лишь смыть с образца остатки электролита и просушить. Получается, что эта технология для реализации в домашних условиях никакой сложности не представляет.

Меднение без ванночки

Данным способом можно наносить металлическое покрытие на любые материалы. Суть заключается в «обмазке» (без прямого контакта) заготовки электролитом специальной кисточкой, щетинки которой – медные проволочки. Недостаток этой технологии в том, что добиться качественного меднения рельефных поверхностей вряд ли удастся. По крайней мере, понадобится много времени и усилий, чтобы тщательно обработать все «щели» и «выбоины».

Особенности подготовительного этапа

Кисточка. В домашних условиях ее делают из многожильного медного проводника. Снять изоляцию и «распушить» один его конец – не проблема. Чтобы было удобнее работать, стоит подумать, из чего изготовить рукоятку кисточки. Ею придется водить по поверхности образца, а с учетом того, что провода гибкие, такое меднение станет испытанием для мастера. Как вариант – подвязать «рабочую часть» к карандашу, пластиковому корпусу шариковой ручки. Догадаться несложно.

Тара. Деталь перед меднением укладывается на любую подходящую посуду. Для удобства работы она не должна иметь высоких бортиков. Оптимальный вариант – тарелка. Плюс к этому – емкость, в которой будет электролит. В нее придется постоянно опускать кисточку, поэтому и здесь выбор не затруднен. Подойдет и стакан, если образец небольшой и раствора понадобится немного. Соответственно, вся тара предварительно обрабатывается – моется, чистится, кипятится, обезжиривается.

Сборка схемы. Аналогично предыдущему способу. Кисточка выполняет функцию анода, поэтому ее к «+» БП, а покрываемая деталь является катодом (к «–»).

Процесс меднения

Для обеспечения неразрывности электрической цепи в посуду наливается электролит, так, чтобы его уровень превышал высоту детали. Кисточкой, которая периодически также обмакивается в растворе (для этого он и заливается в отдельную тару), необходимо водить по-над образцом. В результате его поверхность покрывается слоем меди. По сути, производится ее напыление.

Понятно, что такой процесс в исполнении более сложный, так как проводится в «ручном» режиме. Необходимо постоянно следить, чтобы между кистью и обрабатываемой основой был небольшой зазор. Но и это не главное. Его неизменность – одно из условий равномерности покрытия.

В каких случаях целесообразно использовать такой способ меднения

  • Если материал образца не является токопроводящим.
  • При больших габаритах детали. Подобрать в домашних условиях ванночку соответствующих размеров, к примеру, для люстры, вряд ли получится.

Как определить требуемые параметры блока питания? Для плотности тока при меднении нормой считаются 0,5 А/дм² образца, который предстоит покрыть защитным слоем.

  • Превышение расчетного значения чревато тем, что медь сильно потемнеет, к тому же не будет прочно держаться на основе.
  • При сложной конфигурации детали, наличии множества выступов, заостренных сегментов плотность тока берется меньшей, примерно в 2,5 раза.

Медь довольно быстро окисляется. Перед началом процесса обработки изделия электроды следует хорошо зачистить.

Время выдержки детали в растворе выбирается исходя из того, какой толщины слой необходимо получить при меднении. Зависимость прямая – чем дольше идет обработка, тем толще покрытие.

При необходимости восстановления внешнего вида истершихся элементов фурнитуры (мебельной или иной) их меднение – неплохой выход из положения.

Автор не единожды сталкивался с тем, что люди, озабоченные проблемами экологии, сразу же задаются вопросом – а как в домашних условиях организовать утилизацию отработки? Ведь электролит не вечен, и использовать его всю жизнь точно не получится. Кстати, вполне резонное и более чем справедливое замечание.

Есть неплохое решение – собирать оставшуюся после меднения «бурду» в отдельной стеклянной емкости. Зачем? Пригодится. Этот раствор отлично подходит для обработки древесины. Ваш покорный слуга, читатель, сам пропитывал им лаги перед настилом полов на даче. Учитывая, что зимой она не отапливается, условия эксплуатации материала понятны. Когда спустя 12 лет потребовалось переложить половицы, выяснилось, что лаги – как новенькие. Не было даже малейшего намека на какую-то плесень, следы гнили.

Так как любому из нас приходится заниматься если не строительством, то уж ремонтом обязательно, нет смысла куда-то потихонечку, подальше от сторонних глаз, сливать использованный электролит. Не по-хозяйски это.

Процесс меднения металлических изделий называется гальваностегией. Он основан на осаждении на поверхность деталей другого металла, растворимого в специальной жидкости.

Технология омеднения включает изготовление раствора и создание разноименных электродов. В процессе гальваностегии, ионы меди, растворенные в электролите, притягиваются отрицательным полюсом (обрабатываемая деталь) на свою поверхность.

Омеднение различных деталей в промышленных масштабах применяется не только, как конечный процесс обработки поверхности металлических изделий. Он может использоваться для подготовки деталей к следующей операции, например, никелированию, серебрению или хромированию изделий.

Эти металлы плохо осаждаются на поверхность стальных деталей, а на омедненную поверхность ложатся очень хорошо. В свою очередь медь, осевшая на стальные детали, держится прочно и способствует выравниванию различных дефектов на ее поверхности.

Видео урок по меднению пули своими руками

Меднение деталей в растворе с электролитом

Для металлических деталей можно выполнить меднение в домашних условиях. Рассмотрим меднение, с опусканием детали в раствор с электролитом. Для этого необходимо иметь:

  • небольшие медные пластины,
  • несколько метров токопроводящей проволоки;
  • источник тока, с напряжением до 6 В;
  • рекомендуется также использовать реостат, для регулирования тока и амперметр.

Порядок работы

Меднение детали, без опускания в раствор

Второй способ меднения в домашних условиях металлических изделий, подразумевает выполнение этого процесса без опускания обрабатываемой детали в раствор электролита.

Этот вариант подходит для нанесения покрытия на цинковые и алюминиевые изделия.

Порядок работы

  1. Для этого способа меднения потребуется многожильный медный провод, с двух концов которого, необходимо снять изоляцию. С одной стороны мягкий провод нужно растеребить. Таким образом получается изделие в виде кисточки. Чтобы удобнее в дальнейшем было работать, к этому концу провода нужно привязать твердый предмет в виде рукоятки. Второй очищенный конец провода нужно соединить к положительной клемме источника электрического тока. Напряжение не должно превышать 6 В.
  2. Ранее описанным способом нужно приготовить электролит, размешанный с медным купоросом. В этом методе меднения деталей, раствор можно наливать в любую посуду. Рекомендуется выбрать широкую тару , чтобы было удобно макать медную кисточку из проволоки. Далее необходимо небольшую металлическую деталь положить в эту посуду, с невысокими краями. Предварительно ее нужно очистить, прокипятить в жидкости со стиральным порошком, и промыть. Эту деталь нужно соединить с помощью провода к отрицательной клемме источника тока, с напряжением 6 В.
  3. Процесс меднения происходит следующим образом. Растеребленный конец медной проволоки нужно периодически обмакивать в растворе электролита, с медным купоросом и проводить вдоль детали, не прикасаясь «кистью» к ее поверхности. Но нужно предусмотреть, чтобы между концом кисти и деталью был небольшой слой раствора (катод и анод должны быть всегда смочены электролитом). В процессе меднения отрицательно заряженная деталь притягивает ионы меди и ее поверхность покрывается небольшим красным слоем. После нанесения покрытия, изделие нужно высушить и натереть до блеска.

Мы переехали в новый офис - соседнее здание. Обращайте внимание на схему проезда в разделе контактов.

Вакуумные покрытия временно не наносим

В связи с модернизацией участка вакуумных покрытий, работы по вакуумным напылениям временно не выполняем.

Сертификат ISO 9000

Система менеджмента качества на нашем предприятии соответствует ISO 9000

Нанесение нитрида титана

Наносим вакуумным напылением нитрид титана (TiN) на изделия габаритами до 2500х2500х2500 мм.

Латунирование и бронзирование

Появилась возможность выполнения работ по декоративному нанесению латуни и бронзы

Хорошая новость! Мы переехали!

В связи с долгожданным расширением производства, мы переехали на новую площадку в г. Балашиха. Для вашего удобства - появилась возможность осуществлять забор/доставку деталей нашим автотранспортом!

Партнеры

М - Меднение

  • Шифры наносимых покрытий: М, М.б
  • Обрабатываемые стали: любые, в том числе алюминиевые и титановые сплавы
  • Габариты изделий: до 1000х1000х1000 мм. Масса до 1 т.
  • Нанесение покрытий на изделия любой сложности
  • ОТК, паспорт качества, работа в рамках ГОЗ

Общая информация

Меднение - это процесс гальванического нанесения слоя меди толщиной от 1 мкм до 300 мкм и более.
Медные покрытия обладают высоким сцеплением (адгезией) с различными металлами, высокой пластичностью и электропроводностью.
Области применения деталей с меднением зависят от того, используется ли медное покрытие как функциональное, или же медное покрытие выступает подслоем для нанесения других гальванических покрытий.

В атмосферных условиях медные покрытия легко окисляются и покрываются оксидой плёнкой, приобретая радужные разводы и пятна разных оттенков.

Основные области применения медных покрытий:

Использование меднения как самостоятельного покрытия

  • В декоративных целях.
    В настоящее время большой популярностью используются старинные медные изделия. Гальваническое меднение позволяет наносить медные покрытия, которые после специальной обработки «состариваются» и выглядят так, словно были изготовлены давно.

    Только что нанесённое медное покрытие имеет яркий розовый цвет (блестящий или матовый, в зависимости от технологии нанесения).
  • В гальванопластике.
    Гальваническое меднение применяется для изготовления металлических копий изделий различной формы и размеров. Создаётся восковая или пластиковая основа, которая покрывается электропроводящим лаком и, впоследствии, слоем меди.

    Такая технология меднения часто используется при изготовлении сувениров, ювелирных изделий, барельефов, волноводов и матриц.
  • В технических целях.
    Большое значение меднение металла занимает в электротехнической области. Благодаря низкой цене меднения по сравнению с покрытием серебром или золотом, медные покрытия часто применяются при меднении электротехнических шин, контактов, электродов и других элементов, работающих под напряжением.Часто меднение используется как покрытие под пайку.
Использование меднения в сочетании с другими гальванопокрытиями
  • При нанесении многослойных защитно-декоративных покрытий.
    Как правило, в сочетании с никелем и хромом (трёхслойное защитно-декоративное покрытие) и другими металлами в качестве промежуточного слоя для повышения сцепления с металлом основы и получения более прочных и блестящих покрытий.
  • Для предохранения участков при цементации.
    Меднение часто используется для предохранения участков стальных деталей от цементации (науглероживания). Медью покрываются только те участки, которые в дальнейшем подлежат обработке резанием (твёрдые науглероженные поверхностные слои не поддаются такой обработке, а медь защищает покрытые участки от диффузии в них углерода).
  • При ремонте и восстановлении изделий.
    Меднение металла часто применяется в реставрационных работах при восстановлении хромированных частей автомобильной или мото-техники, при этом наносится большой слой меди 100-250 мкм и более, который закрывает поры и дефекты металла, шлифуется и выполняет роль новой основы для нанесения последующих покрытий.

Примеры деталей с гальваническим меднением

Технология меднения

Различают 2 типа медных электролитов: кислые и щелочные.

В кислых электролитах нельзя получить прочно сцепленные медные покрытия на стальных и цинковых изделиях, так как в этом случае железо и цинк в контакте с медью растворяются — нарушается сцепление с покрытием. Для устранения этой особенности - необходимо первый тонкий слой меди (2—3 мкм) нанести в щелочном электролите, а в дальнейшем наращивать покрытие в более экономичном кислом электролите до заданной толщины.

Цинковые изделия сложной формы меднить лучше всего в щелочных (цианистых) электролитах.

Кислые электролиты меднения

Наиболее распространены электролиты двух видов - сернокислые и борфтористоводородные .
Наибольшее применение нашли сернокислые электролиты, отличающиеся простотой состава, устойчивостью и высоким выходом по току (до 100%).
Перед меднением стальных деталей в кислых электролитах их предварительно меднят в цианистых электролитах или осаждают тонкий подслой никеля.

Недостатком этих электролитов является невозможность непосредственного покрытия стальных и цинковых деталей вследствие контактного выделения меди, имеющей плохое сцепление с основным металлом, а также их незначительная рассеивающая способность и более грубая структура осадков по сравнению с другими электролитами.

Щелочные электролиты меднения

К щелочным электролитам меднения относятся цианистые , пирофосфатные и другие электролиты.
Цианистые медные электролиты обладают высокой рассеивающей способностью, мелкокристаллической структурой осадков, возможностью непосредственного меднения стольных деталей.

К недостаткам относятся низкая плотность тока и неустойчивость состава вследствие карбонизации свободного цианида под действием двуокиси углерода воздуха. Кроме того, цианистые электролиты характеризуются пониженным выходом по току (не более 60-70%)

Стоимость меднения

Для оценки стоимости работ, просьба выслать запрос на электронную почту [email protected]
К запросу желательно приложить чертёж или эскиз изделий, а также указать количество деталей.

Современная техника выдвигает жесткие требования к характеристикам конструктивных элементов, во многих случаях эти задачи решает химическое меднение. Использование специальных покрытий поверхностей деталей выгодно экономически, так как гальваническое меднение позволяет понизить металлоемкость изделий из дорогостоящих металлов.

Физико-механические характеристики меди и сферы использования меднения

Плотность меди 8,96 г/см 3 , атомная масса 693,54, удельное электрическое сопротивление 1,68×10 -8 Ом×м, температура плавления +1083°С. На открытом воздухе в присутствии агрессивных химических соединении медь окисляется, при контакте с сернистыми соединениями покрывается пленкой сульфида меди темно-коричневого или серого оттенков. Под влиянием углекислоты и влаги пленка приобретает зеленый цвет, верхний слой состоит из гидрокарбонатов. Медь легко растворяется в растворе азотной кислоты, разбавленная серная кислота на химическое меднение негативного влияния почти не оказывает. Но наличие кислорода увеличивает скорость протекания химических реакций. При наличии открытых пор в покрытии образуется гальванопара, что нужно учитывать при меднении. Железо в этом случае является анодом, коррозионные процессы протекают очень интенсивно.

В связи с такими особенностями, процесс меднения в большинстве случаев должен завершаться дополнительной обработкой поверхностей. Покрытия шлифуются или полируются до зеркального блеска. Медь имеет высокую адгезию с различными металлами: алюминий, серебро, цинк, никель, свинец, хром и т. д. В связи с этими особенностями химическое меднение часто используется для создания подслоя при серебрении, никелировании, хромировании поверхностей деталей. Меднение получило широкое распространение в качестве метода эффективной защиты отдельных участков деталей от появления эффекта науглероживании при процессе цементации. В зависимости от назначения деталей или изделий гальваническое нанесение меди может иметь следующую толщину:

Сравнительные показатели растворов

В процессе меднения используется большое количество специальных технологических растворов, разделяемых на две большие группы:

  • Простой кислый электролит. Из простых применяется фторборатный, кремнефторидный, сульфатный, хлоридный и сульфамидный раствор.
  • Комплексный электролит. Преимущественно щелочные, медь присутствует как положительно или отрицательно заряженные комплексные ионы.

Процесс осаждения в кислых электролитах происходит при высокой плотности по току, они устойчивы, просты по химическому составу. Главными составляющими являются соответствующие кислоты и соли, осадки меди из них достаточно плотны и имеют крупнокристаллическую структуру. Недостатки – непосредственное меднение стали, цинковых сплавов и иных металлов происходит с более низким отрицательным потенциалом, чем медь.

Обработка деталей в комплексных электролитах выполняется за счет комплексных ионов, для них требуется высокая катодная поляризация. Выход по току меньше, что способствует более равномерному осаждению, структура мелкокристаллическая. Используются пирофосфатные, цианидные, аммонийные, триполифосфатные, цитратные и другие растворы.

Простые кислые составы

  1. Сульфатные. Главные компоненты серная кислота и сульфат меди. Сернокислое соединение отличается невысокой электропроводимостью, для повышения параметра добавляется серная кислота. Выход меди по току достигает 100%, на катоде не выделяется водород. За счет повышения концентрации кислоты уменьшается растворимость сульфата, что понижает верхний предел максимально допустимой плотности тока.

При перемешивании увеличивается концентрация медных ионов на катодном слое. При повышении температуры возрастает растворимость сульфата меди, электролит повышает кислотность, что приводит к получению мелкокристаллических осадков.

Для улучшения катодной поляризации в электролит добавляются поверхностно активные вещества. Дополнительно они уменьшают образование наростов на острых краях.

Для образования блестящего покрытия используются аноды АМФ, не допускающие образование шлама, или аноды из особо чистой рафинированной меди.

Электролит фторборатный.

Для недопущения попадания шлама аноды помещаются в чехлы, изготовленные из кислотоустойчивого материала, дополнительно раствор постоянно фильтруется.

  1. Фторборатные. Отличаются высокой устойчивостью, гальваническое нанесение получается плотным и мелкокристаллическим, рассеивающие показатели такие же, как при сульфатном меднении. За счет большой растворимости увеличивается плотность тока, осаждать медь непосредственно на детали нельзя.

При непрерывном перемешивании допускается повышать плотность тока. Контроль технологически параметров меднения осуществляется измерением кислотности раствора. Для повышения качества меднения используется карбонат натрия, для понижения медный купорос.

  1. Нитратные. Электролит используется при гальванопластике, обеспечивает повышенное качество осадка.

Режимы и состав нитратных электролитов

Комплексные электролиты

  1. Цианидные. Условия обработки значительно отличаются от осаждения из кислых, в них медь существует в виде комплексных ионов, что заметно понижает ее активность. Увеличение плотности тока принуждает катодный потенциал резко смещаться в поле отрицательных значений. Но процесс меднения нельзя производить при увеличенной плотности тока в связи с тем, что выход меди может падать до нуля. Главными компонентами раствора являются свободный цианид натрия и комплексный цианид калия. Во время работы содержание меди понижается из-за недостаточной их растворимости.

Режим и состав цианидных электролитов для меднения

  1. Пирофосфатные. Медные осадки имеют мелкокристаллическую структуру, гладкие, блестящие или полублестящие. Для улучшения качества обработки и повышения катодной и анодной плотностей может добавляться медный купорос. Катодный потенциал в пирофосфатных растворах имеет более отрицательные параметры, чем у кислотных.

Режим и состав пирофосфатных электролитов

  1. Этилендиаминовые. Процесс меднения может осуществляться непосредственно по поверхности стали, при низких плотностях тока катодная поляризация достигает больших значений. Рассеивающие характеристики выше, чем у сульфатных, но ниже, чем имеет цианидный раствор.

Режим и состав этилендиаминовых электролитов

  1. Полиэтиленполиаминовые. Во время обработки деталей потенциалы смещаются в поле отрицательных значений, электролит применяется вместо цианидных.

  1. Аммонийные. В состав входит аммиак, сульфат аммония и сульфат меди. При невысоких плотностях тока уменьшается выход по току, улучшение меднения осуществляется за счет добавления нитрата аммония. Осадки равномерные по толщине, плотные и полублестящие.

Без специальной обработки поверхностей медные осадки имеют недостаточную адгезию, причина – пассивирование стали раствором аммиака. Улучшение параметров покрытия достигается введением в раствор нитрата меди.
Устройство ванны меднения Линейные параметры и конструктивные особенности должны отвечать требованиям ГОСТ 23738-85. изготавливается из модифицированных особо устойчивых пластиков, конкретные марки подбираются с учетом параметров технологических процессов.

Ванна без кармана

Ванна с карманом

Конкретный выбор ванны меднения осуществляется в зависимости от особенностей предприятия, характеристик подлежащих меднению деталей и общих производственных мощностей.

Во время проектирования рассчитываются максимальные нагрузки с учетом объема раствора, длина, высота и ширина может изменяться по желанию заказчиков. При необходимости на ванны меднения устанавливается дополнительное оборудование и водопроводная арматура. За счет специальных механизмов улучшается качество процесса меднения. Используемые пластики адаптируются к химическому составу электролита и температурным режимам меднения.

Механическая подготовка поверхностей

Перед меднением с поверхности должна удаляться окалина, заусеницы и раковины. Качество обработки регламентируется положениями действующего ГОСТа 9.301-86. Конкретные параметры шероховатости устанавливаются в зависимости от назначения покрытия. После механической обработки деталей с поверхности должны быть удалены все дефекты, оказывающие негативное влияние на качество меднения. В обязательном порядке удаляется техническая смазка и эмульсия, металлическая стружка, продукты коррозионных процессов и пыль.

Подготовка к меднению производится при следующих технологических операциях:

  1. Шлифование. Верхний слой деталей снимается абразивными элементами, может быть тонким, декоративным или грубым.
  2. Полирование. Во время операции сглаживаются мельчайшие выступы, поверхность блестящая зеркальная.
  3. Крацевание. Для очистки поверхностей применяются металлические щетки.
  4. Галтовка. Детали обкатываются в специальных колоколах.
  5. Химическое и электрохимическое обезжиривание. Для обработки используют органические и неорганические растворы.

От качества предварительной подготовки поверхностей во многом зависит процесс меднения и физические показатели осадков.

Гальваника – это и раздел прикладной науки «Электрохимия», в котором изучаются процессы, протекающие при осаждении катионов металла на катоде, помещенном в электролитический раствор, и технологический процесс. Гальваника в домашних условиях или выполняемая на производстве позволяет наносить на поверхность обрабатываемого изделия тонкий слой металла, который может выступать в роли защитного или декоративного покрытия.

Методы реализации такого технологического процесса, отличающегося достаточно высокой сложностью, уже хорошо отработаны, поэтому сегодня его активно используют не только производственные предприятия, но и многие домашние мастера.

Особенности процесса

Покрытие, формируемое на обрабатываемой детали при помощи гальваники, может наноситься в технологических целях либо выполнять декоративные, защитные или сразу обе функции. В декоративных целях создают тонкий слой золота или серебра, а чтобы обеспечить надежную защиту поверхности обрабатываемой детали от коррозии, выполняют цинкование или гальваническое меднение.

Сделать гальванику даже в домашних условиях несложно. Выполняют такую процедуру следующим образом.

  • В диэлектрическую емкость с электролитом опускают два анода, подключаемые к плюсовому контакту источника электрического тока. Материалом изготовления таких анодов должен быть металл, слой из которого необходимо сформировать.
  • Само обрабатываемое изделие, подключаемое к минусовому контакту источника электрического тока и, таким образом, выступающее в роли катода, помещается в электролите между анодами.
  • Гальванизация, то есть процесс переноса молекул металла с электролита на изделие-катод, начинает происходить в тот момент, когда замыкается полученная электрическая сеть.
В результате на обрабатываемой поверхности формируется тонкий и однородный слой металла, который изначально содержался в химическом составе электролита.

Необходимое оборудование

Гальваника своими руками может быть качественно выполнена с использованием даже самого простейшего оборудования, которое есть в арсенале многих мастеров. В первую очередь следует подобрать источник постоянного тока, который обязательно должен быть оснащен регулятором выходного напряжения. Наличие такого регулятора необходимо для того, чтобы иметь возможность плавно и в широких пределах изменять мощность вашего самодельного устройства для гальваники.

В качестве источника питания в домашних условиях очень удобно использовать выпрямитель электрического тока, который можно собрать самостоятельно (или приобрести серийную модель). Многие умельцы, выполняющие нанесение гальванического покрытия в домашних условиях, в качестве источника тока применяют серийные сварочные аппараты.

Гальваническая ванна своими руками также может быть изготовлена без особых проблем. В качестве такой ванны можно использовать любую емкость из стекла или пластика, при этом необходимо учитывать, что в такую емкость для гальваники должна помещаться как обрабатываемая деталь, так и требуемое количество электролита. Очень важно также, чтобы ванна была достаточно прочной и могла выдерживать высокую температуру, величина которой может доходить до 80°.

Аноды, используемые для осуществления гальваники в домашних условиях, выполняют сразу несколько важных функций:

  • подводят в электролит электрический ток и обеспечивают равномерное распределение последнего по обрабатываемой поверхности;
  • возмещают убыль наносимого на изделие металла, расходуемого из химического состава электролита;
  • способствуют протеканию некоторых окислительных процессов.
Выбирая аноды для своего гальванического аппарата, следует соблюдать одно важное правило: их площадь должна быть больше, чем площадь обрабатываемой поверхности.

Гальваника дома не может быть осуществлена без использования нагревательного прибора, при помощи которого электролит доводится до требуемой рабочей температуры. Очень удобно, когда интенсивность нагрева, обеспечиваемого таким устройством, может регулироваться. Если ориентироваться на опыт домашних умельцев, которые уже имеют опыт нанесения гальванических покрытий в домашних условиях, можно порекомендовать использовать в качестве нагревательного прибора небольшую электроплитку или обычный утюг с регулировкой степени нагрева подошвы.

Что потребуется для приготовления электролита

Чтобы безопасно хранить в домашних условиях химические реактивы, из которых будет готовиться электролит для гальваники, а также сам готовый раствор, вам потребуется стеклянная посуда с притертыми крышками. Количество химических реактивов, из которых готовится электролитический раствор, необходимо отмерять с точностью до одного грамма. Для решения такой задачи в домашних условиях подойдут даже недорогие электронные весы, которые можно приобрести в любом хозяйственном магазине.

Если вы решили заняться нанесением гальванических покрытий на различные изделия в домашних условиях, то наверняка столкнетесь с проблемой приобретения химических реактивов, из которых готовится электролитический раствор. Дело в том, что организации, производящие и реализующие такие химические вещества, могут продавать их только тем, кто имеет соответствующие разрешительные документы. Приобрести такие химические реактивы частному лицу или даже организации, не обладающим такими документами, проблематично.

Как правильно подготовить изделие к процедуре

После того как вы изготовили свой гальванический аппарат, нашли все необходимое оснащение и химические составляющие, можно приступать к такому важному процессу, как подготовка изделия, которое будет подвергаться гальванике. Важность такого процесса очень сложно переоценить, так как именно от качества его выполнения во многом зависит то, какими характеристиками будет обладать готовое покрытие.

В большинстве случаев подготовка изделия к гальванике не ограничивается только очисткой его поверхности от загрязнений и ее обезжириванием. Выполняются также и последующая шлифовка с использованием наждачной бумаги и специальных паст.

Гальваническое покрытие выделяет все недостатки поверхности, поэтому обрабатываемая деталь должна быть идеально подготовлена, то есть устранены все сколы, царапины и раковины

Для того чтобы обезжирить обрабатываемую поверхность перед гальваникой, можно использовать органические растворители в чистом виде или приготовить для этих целей специальный раствор. В частности, для эффективного обезжиривания стали или чугуна в домашних условиях готовят растворы, в состав которых входят едкий натр, жидкое стекло, карбонат натрия и фосфат натрия. Обезжиривание изделий из таких металлов выполняют в нагретом до 90° растворе. Цветные металлы можно эффективно обезжирить растворами, содержащими в своем составе хозяйственное мыло и фосфорнокислый натрий.

Чтобы получить качественное гальваническое покрытие как в домашних, так и в производственных условиях, с обрабатываемой поверхности необходимо также удалить окисную пленку, для чего используют специальные декапирующие растворы с серной или хлороводородной кислотой.

Требования техники безопасности

Любая гальваническая операция (цинкование, хромирование, никелирование, меднение и др.) является опасным технологическим процессом, поэтому при ее выполнении в домашних условиях необходимо строго следовать требованиям техники безопасности. Опасной гальванику делают как токсичные химические вещества, так и высокая температура нагрева электролита, а также риски, связанные с любыми электрохимическими процессами.

Для проведения гальваники в домашних условиях лучше отвести нежилое помещение, в качестве которого может выступать гараж или мастерская. В нем обязательно должна быть организована качественная вентиляция. Все электрическое оборудование, которое вы будете использовать для того, чтобы сделать гальванику, необходимо заземлить.

Личная безопасность – самое важное правило, которого следует строго придерживаться при осуществлении гальваники в домашних условиях. К мерам, которые способны обеспечить такую безопасность, следует отнести:

  • использование респиратора для защиты дыхательных путей;
  • защита рук при помощи мягких и прочных резиновых перчаток;
  • использование при работе клеенчатого фартука и обуви, способной защитить от ожогов кожу ног;
  • защита органов зрения при помощи специальных очков.

Кроме того, во время процедуры гальваники не следует ничего есть и пить, чтобы случайно не наглотаться и вредных испарений.

Чтобы быть готовым к любым неожиданностям, которые могут возникнуть в процессе выполнения такой операции, лучше предварительно почитать специальную литературу или даже посмотреть обучающее видео на данную тему.

Никелирование

Покрытие металла слоем никеля в домашних условиях могут выполнять в качестве финишной обработки или перед хромированием. Такой процесс получил название «гальваностегия», так как наносимый на поверхность изделия слой никеля повышает ее устойчивость к негативным факторам внешней среды. Кроме высоких защитных свойств, никелевый слой отличается и декоративной привлекательностью.

Температура электролита при выполнении никелирования не превышает 25°, а плотность тока находится в пределах 1,2 А/дм 2 . Электролит, кислотность которого должна находиться в пределах 4–5 pH, представляет собой водный раствор, в состав которого входят такие химические элементы, как сульфат никеля, магний, натрий, пищевая соль, борная кислота.

После завершения процесса гальваники изделие извлекают из электролитического раствора, промывают в воде, тщательно просушивают и полируют.

Хромирование

Гальваническое хромирование в домашних условиях или на производственном предприятии позволяет придать поверхностному слою обрабатываемого изделия более высокую твердость, устойчивость к коррозии, а также декоративность. Поскольку хромовое покрытие отличается достаточно высокой пористостью, его выполняют после гальванического нанесения меди на обрабатываемую деталь (либо никелирования). Для выполнения такой технологической операции используют аноды, которые изготовлены из сплава свинца, олова и сурьмы.

На конечный результат хромирования, выполнить которое в домашних условиях достаточно сложно, так как для этого необходимо использовать токи высокой плотности – до 100 А/дм 2 , оказывают влияние различные факторы. К наиболее значимым из них следует отнести:

  • температуру используемого электролита – от данного параметра зависит оттенок формируемого покрытия, которое может быть матовым (температура ниже 35°), блестящим (35–55°) и молочным (выше 55°);
  • химический состав электролита, оказывающий влияние на защитные свойства формируемого покрытия, а также на его цвет, который может быть темно-голубым, синим, агатовым.

Заключительным этапом хромирования после извлечения детали из электролитического раствора является промывка обработанной поверхности водой, последующая нейтрализация в растворе пищевой соды, еще одна промывка, просушка и полировка с использованием специальных паст.

Меднение

Меднение с использованием гальваники в домашних условиях необходимо для того, чтобы создать на поверхности обрабатываемого изделия токопроводящий слой, отличающийся небольшим значением электрического сопротивления, а также для того чтобы защитить деталь от негативного воздействия внешней среды.

Наносить слой меди на стальные и чугунные изделия, предварительно не покрыв их слоем никеля, смертельно опасно, так как для этого необходимо использовать цианистый электролит.

После предварительного никелирования металл покрывают слоем меди с использованием раствора сернокислой меди, концентрированной серной кислоты и воды комнатной температуры.

Публикации по теме