सरल अंशों को कैसे गुणा करें। भिन्नों को किसी संख्या से गुणा करने के नियम

हम साधारण भिन्नों के गुणन पर कई संभावित तरीकों से विचार करेंगे।

भिन्न को भिन्न से गुणा करना

यह सबसे सरल मामला है, जिसमें आपको निम्नलिखित का उपयोग करने की आवश्यकता है भिन्न गुणन नियम.

प्रति भिन्न को भिन्न से गुणा करें, ज़रूरी:

  • पहली भिन्न के अंश को दूसरी भिन्न के अंश से गुणा करें और उनके गुणनफल को नई भिन्न के अंश में लिखें;
  • पहली भिन्न के हर को दूसरी भिन्न के हर से गुणा करें और उनके गुणनफल को नई भिन्न के हर में लिखें;
  • अंशों और हरों को गुणा करने से पहले, जांच लें कि क्या भिन्नों को कम किया जा सकता है। गणनाओं में भिन्नों को कम करने से आपकी गणना में बहुत सुविधा होगी।

    किसी भिन्न को प्राकृत संख्या से गुणा करना

    भिन्न करने के लिए एक प्राकृतिक संख्या से गुणा करेंआपको भिन्न के अंश को इस संख्या से गुणा करना होगा, और भिन्न के हर को अपरिवर्तित छोड़ना होगा।

    यदि गुणन का परिणाम एक अनुचित भिन्न है, तो इसे मिश्रित संख्या में बदलना न भूलें, अर्थात पूरे भाग का चयन करें।

    मिश्रित संख्याओं का गुणन

    मिश्रित संख्याओं को गुणा करने के लिए, आपको पहले उन्हें अनुचित भिन्नों में बदलना होगा और फिर साधारण भिन्नों को गुणा करने के नियम के अनुसार गुणा करना होगा।

    किसी भिन्न को प्राकृत संख्या से गुणा करने का दूसरा तरीका

    कभी-कभी गणना में किसी साधारण भिन्न को किसी संख्या से गुणा करने की भिन्न विधि का उपयोग करना अधिक सुविधाजनक होता है।

    किसी भिन्न को एक प्राकृत संख्या से गुणा करने के लिए, आपको भिन्न के हर को इस संख्या से विभाजित करना होगा, और अंश को वही छोड़ देना होगा।

    जैसा कि उदाहरण से देखा जा सकता है, नियम के इस संस्करण का उपयोग करना अधिक सुविधाजनक है यदि अंश का हर एक प्राकृतिक संख्या से शेष के बिना विभाज्य है।

    भिन्न के साथ क्रिया

    समान हर के साथ भिन्न जोड़ना

    भिन्नों को जोड़ना दो प्रकार का होता है:

  • समान हर के साथ भिन्न जोड़ना
  • भिन्न हर के साथ भिन्न जोड़ना
  • आइए समान हर वाले भिन्नों को जोड़कर प्रारंभ करें। यहाँ सब कुछ सरल है। समान हर के साथ भिन्न जोड़ने के लिए, आपको उनके अंशों को जोड़ना होगा, और हर को अपरिवर्तित छोड़ना होगा। उदाहरण के लिए, आइए भिन्नों को जोड़ें और . हम अंश जोड़ते हैं, और हर को अपरिवर्तित छोड़ देते हैं:

    इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो चार भागों में बांटा गया है। यदि आप पिज़्ज़ा में पिज़्ज़ा मिलाते हैं, तो आपको पिज़्ज़ा मिलता है:

    उदाहरण 2भिन्न जोड़ें और .

    फिर से, अंश जोड़ें, और हर को अपरिवर्तित छोड़ दें:

    उत्तर एक अनुचित अंश है। यदि कार्य का अंत आता है, तो यह अनुचित अंशों से छुटकारा पाने के लिए प्रथागत है। एक अनुचित भिन्न से छुटकारा पाने के लिए, आपको उसमें पूरे भाग का चयन करना होगा। हमारे मामले में, पूर्णांक भाग आसानी से आवंटित किया जाता है - दो को दो से विभाजित करना एक के बराबर होता है:

    इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो दो भागों में विभाजित है। यदि आप पिज्जा में अधिक पिज्जा जोड़ते हैं, तो आपको एक पूरा पिज्जा मिलता है:

    उदाहरण 3. भिन्न जोड़ें और .

    इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो तीन भागों में बांटा गया है। यदि आप पिज्जा में अधिक पिज्जा जोड़ते हैं, तो आपको पिज्जा मिलता है:

    उदाहरण 4व्यंजक का मान ज्ञात कीजिए

    यह उदाहरण पिछले वाले की तरह ही हल किया गया है। अंशों को जोड़ा जाना चाहिए और हर को अपरिवर्तित छोड़ दिया जाना चाहिए:

    आइए एक चित्र का उपयोग करके हमारे समाधान को चित्रित करने का प्रयास करें। यदि आप पिज़्ज़ा में पिज़्ज़ा जोड़ते हैं और अधिक पिज़्ज़ा जोड़ते हैं, तो आपको 1 पूर्ण और अधिक पिज़्ज़ा मिलता है।

    जैसा कि आप देख सकते हैं, समान हर वाले भिन्नों को जोड़ना मुश्किल नहीं है। निम्नलिखित नियमों को समझना पर्याप्त है:

  1. एक ही हर के साथ भिन्नों को जोड़ने के लिए, आपको उनके अंशों को जोड़ना होगा, और हर को समान छोड़ना होगा;
  2. यदि उत्तर गलत भिन्न निकला, तो आपको उसमें पूरे भाग का चयन करने की आवश्यकता है।
  3. भिन्न हर के साथ भिन्न जोड़ना

    अब हम सीखेंगे कि भिन्न हरों वाली भिन्नों को कैसे जोड़ा जाता है। भिन्नों को जोड़ते समय, उन भिन्नों के हर समान होने चाहिए। लेकिन वे हमेशा एक जैसे नहीं होते हैं।

    उदाहरण के लिए, भिन्नों को जोड़ा जा सकता है क्योंकि उनके हर समान होते हैं।

    लेकिन भिन्नों को एक साथ नहीं जोड़ा जा सकता, क्योंकि इन भिन्नों के हर अलग-अलग होते हैं। ऐसे मामलों में, भिन्नों को समान (सामान्य) हर में घटाया जाना चाहिए।

    भिन्नों को एक ही हर में कम करने के कई तरीके हैं। आज हम उनमें से केवल एक पर विचार करेंगे, क्योंकि बाकी विधियाँ एक शुरुआत के लिए जटिल लग सकती हैं।

    इस पद्धति का सार यह है कि दोनों भिन्नों के हरों के सबसे कम सामान्य गुणक (LCM) को पहले खोजा जाता है। फिर एलसीएम को पहले अंश के हर से विभाजित किया जाता है और पहला अतिरिक्त कारक प्राप्त होता है। वे दूसरे भिन्न के साथ भी ऐसा ही करते हैं - NOC को दूसरे भिन्न के हर से विभाजित किया जाता है और दूसरा अतिरिक्त गुणक प्राप्त किया जाता है।

    फिर भिन्नों के अंश और हर को उनके अतिरिक्त गुणनखंडों से गुणा किया जाता है। इन क्रियाओं के परिणामस्वरूप, भिन्न हर वाले भिन्न भिन्नों में बदल जाते हैं जिनके हर समान होते हैं। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे जोड़ना है।

    उदाहरण 1. भिन्न जोड़ें और

    इन भिन्नों के अलग-अलग हर होते हैं, इसलिए आपको उन्हें समान (सामान्य) हर में लाना होगा।

    सबसे पहले, हम दोनों भिन्नों के हरों में से सबसे छोटा उभयनिष्ठ गुणज पाते हैं। पहली भिन्न का हर संख्या 3 है, और दूसरी भिन्न का हर संख्या 2 है। इन संख्याओं का सबसे छोटा सामान्य गुणज 6 है।

    एलसीएम (2 और 3) = 6

    अब वापस भिन्नों पर और . सबसे पहले, हम एलसीएम को पहले अंश के हर से विभाजित करते हैं और पहला अतिरिक्त कारक प्राप्त करते हैं। LCM संख्या 6 है, और पहली भिन्न का हर 3 संख्या है। 6 को 3 से भाग देने पर हमें 2 प्राप्त होता है।

    परिणामी संख्या 2 पहला अतिरिक्त कारक है। हम इसे पहले अंश में लिखते हैं। ऐसा करने के लिए, हम भिन्न के ऊपर एक छोटी तिरछी रेखा बनाते हैं और इसके ऊपर पाया गया अतिरिक्त कारक लिखते हैं:

    हम दूसरे अंश के साथ भी ऐसा ही करते हैं। हम LCM को दूसरे भिन्न के हर से भाग देते हैं और दूसरा अतिरिक्त गुणनखंड प्राप्त करते हैं। LCM संख्या 6 है, और दूसरी भिन्न का हर 2 संख्या है। 6 को 2 से भाग देने पर हमें 3 प्राप्त होता है।

    परिणामी संख्या 3 दूसरा अतिरिक्त कारक है। हम इसे दूसरे अंश में लिखते हैं। फिर से, हम दूसरी भिन्न के ऊपर एक छोटी तिरछी रेखा बनाते हैं और इसके ऊपर पाया गया अतिरिक्त गुणनखंड लिखते हैं:

    अब हम जोड़ने के लिए पूरी तरह तैयार हैं। यह अंशों के अंशों और हरों को उनके अतिरिक्त कारकों से गुणा करने के लिए बनी हुई है:

    गौर से देखिए कि हम क्या हासिल कर चुके हैं। हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके हर समान थे। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे जोड़ना है। आइए इस उदाहरण को अंत तक पूरा करें:

    इस प्रकार उदाहरण समाप्त होता है। जोड़ने के लिए यह पता चला है।

    आइए एक चित्र का उपयोग करके हमारे समाधान को चित्रित करने का प्रयास करें। यदि आप पिज़्ज़ा में पिज़्ज़ा जोड़ते हैं, तो आपको एक पूरा पिज़्ज़ा और दूसरा पिज़्ज़ा का छठा हिस्सा मिलता है:

    भिन्नों को समान (सामान्य) हर में कम करना भी एक चित्र का उपयोग करके चित्रित किया जा सकता है। भिन्नों को और एक सामान्य हर में लाने पर, हमें भिन्न और . इन दो भिन्नों को पिज्जा के समान स्लाइस द्वारा दर्शाया जाएगा। फर्क सिर्फ इतना होगा कि इस बार उन्हें बराबर शेयरों (एक ही हर में घटाकर) में बांटा जाएगा।

    पहला चित्र एक भिन्न दिखाता है (छह में से चार टुकड़े) और दूसरी तस्वीर एक भिन्न (छह में से तीन टुकड़े) दिखाती है। इन टुकड़ों को एक साथ रखने पर हमें (छः में से सात टुकड़े) मिलते हैं। यह भिन्न गलत है, इसलिए हमने इसमें पूर्णांक भाग को हाइलाइट किया है। परिणाम था (एक पूरा पिज्जा और दूसरा छठा पिज्जा)।

    ध्यान दें कि हमने इस उदाहरण को बहुत अधिक विस्तार से चित्रित किया है। शिक्षण संस्थानों में इस तरह के विस्तृत तरीके से लिखने की प्रथा नहीं है। आपको दोनों हरों और उनके लिए अतिरिक्त कारकों के एलसीएम को जल्दी से खोजने में सक्षम होना चाहिए, साथ ही आपके अंश और हरों द्वारा पाए गए अतिरिक्त कारकों को जल्दी से गुणा करना होगा। स्कूल में रहते हुए, हमें इस उदाहरण को इस प्रकार लिखना होगा:

    लेकिन सिक्के का दूसरा पहलू भी है। यदि गणित के अध्ययन के पहले चरणों में विस्तृत नोट्स नहीं बनाए जाते हैं, तो इस तरह के प्रश्न "वह संख्या कहाँ से आती है?", "अंश अचानक पूरी तरह से भिन्न भिन्नों में क्यों बदल जाते हैं? «.

    भिन्न हर के साथ भिन्न जोड़ना आसान बनाने के लिए, आप निम्न चरण-दर-चरण निर्देशों का उपयोग कर सकते हैं:

  4. भिन्नों के हरों का LCM ज्ञात कीजिए;
  5. प्रत्येक भिन्न के हर से LCM को विभाजित करें और प्रत्येक भिन्न के लिए एक अतिरिक्त गुणक प्राप्त करें;
  6. भिन्नों के अंशों और हरों को उनके अतिरिक्त गुणनखंडों से गुणा करें;
  7. समान भाजक वाले भिन्न जोड़ें;
  8. यदि उत्तर गलत भिन्न निकला हो, तो उसके पूरे भाग का चयन करें;
  9. उदाहरण 2व्यंजक का मान ज्ञात कीजिए .

    आइए ऊपर दिए गए आरेख का उपयोग करें।

    चरण 1. भिन्नों के हरों के लिए LCM ज्ञात कीजिए

    हम दोनों भिन्नों के हरों के लिए LCM ज्ञात करते हैं। भिन्नों के हर संख्या 2, 3 और 4 हैं। आपको इन संख्याओं के लिए LCM ज्ञात करने की आवश्यकता है:

    चरण 2. एलसीएम को प्रत्येक भिन्न के हर से विभाजित करें और प्रत्येक भिन्न के लिए एक अतिरिक्त गुणक प्राप्त करें

    एलसीएम को पहले भिन्न के हर से विभाजित करें। एलसीएम संख्या 12 है, और पहली भिन्न का हर संख्या 2 है। 12 को 2 से विभाजित करने पर, हमें 6 मिलता है। हमें पहला अतिरिक्त गुणनखंड 6 मिलता है। हम इसे पहले भिन्न के ऊपर लिखते हैं:

    अब हम LCM को दूसरी भिन्न के हर से भाग देते हैं। LCM संख्या 12 है, और दूसरे भिन्न का हर संख्या 3 है। हम 12 को 3 से विभाजित करते हैं, हमें 4 मिलता है। हमें दूसरा अतिरिक्त गुणनखंड 4 मिलता है। हम इसे दूसरे भिन्न के ऊपर लिखते हैं:

    अब हम LCM को तीसरे भिन्न के हर से भाग देते हैं। LCM संख्या 12 है, और तीसरे भिन्न का हर संख्या 4 है। 12 को 4 से विभाजित करने पर, हमें 3 मिलता है। हमें तीसरा अतिरिक्त कारक मिलता है। हम इसे तीसरे अंश पर लिखते हैं:

    चरण 3. भिन्नों के अंशों और हरों को अपने अतिरिक्त गुणनखंडों से गुणा करें

    हम अंशों और हरों को अपने अतिरिक्त कारकों से गुणा करते हैं:

    चरण 4. भिन्नों को जोड़ें जिनमें समान हर हों

    हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके समान (सामान्य) भाजक हैं। इन अंशों को जोड़ना बाकी है। जोड़ें:

    जोड़ एक पंक्ति में फिट नहीं हुआ, इसलिए हमने शेष व्यंजक को अगली पंक्ति में स्थानांतरित कर दिया। गणित में इसकी अनुमति है। जब कोई व्यंजक एक पंक्ति पर फिट नहीं बैठता है, तो उसे अगली पंक्ति में ले जाया जाता है, और पहली पंक्ति के अंत में और एक नई पंक्ति की शुरुआत में एक समान चिह्न (=) लगाना आवश्यक है। दूसरी पंक्ति पर समान चिह्न इंगित करता है कि यह उस व्यंजक की निरंतरता है जो पहली पंक्ति पर था।

    चरण 5. यदि उत्तर गलत भिन्न निकला है, तो इसके पूर्णांक भाग का चयन करें

    हमारा उत्तर एक अनुचित भिन्न है। हमें इसके पूरे हिस्से को अलग करना होगा। हम हाइलाइट करते हैं:

    जवाब मिला

    समान हर वाले भिन्नों का घटाव

    अंश घटाव दो प्रकार के होते हैं:

  10. समान हर वाले भिन्नों का घटाव
  11. भिन्न हर के साथ भिन्नों का घटाव

सबसे पहले, आइए जानें कि समान हर वाले भिन्नों को कैसे घटाना है। यहाँ सब कुछ सरल है। एक भिन्न से दूसरे को घटाने के लिए, आपको दूसरे भिन्न के अंश को पहले भिन्न के अंश से घटाना होगा, और हर को वही छोड़ देना होगा।

उदाहरण के लिए, आइए व्यंजक का मान ज्ञात करें। इस उदाहरण को हल करने के लिए, पहले अंश के अंश से दूसरे अंश के अंश को घटाना आवश्यक है, और हर को वही छोड़ दें। चलो इसे करते हैं:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो चार भागों में बांटा गया है। यदि आप पिज्जा से पिज्जा काटते हैं, तो आपको पिज्जा मिलता है:

उदाहरण 2व्यंजक का मान ज्ञात कीजिए।

फिर से, पहले भिन्न के अंश से, दूसरे भिन्न के अंश को घटाएँ, और हर को वही छोड़ दें:

इस उदाहरण को आसानी से समझा जा सकता है यदि हम एक पिज्जा के बारे में सोचते हैं जो तीन भागों में बांटा गया है। यदि आप पिज्जा से पिज्जा काटते हैं, तो आपको पिज्जा मिलता है:

उदाहरण 3व्यंजक का मान ज्ञात कीजिए

यह उदाहरण पिछले वाले की तरह ही हल किया गया है। पहले भिन्न के अंश से, आपको शेष भिन्नों के अंशों को घटाना होगा:

उत्तर एक अनुचित अंश है। यदि उदाहरण पूरा हो गया है, तो यह अनुचित अंश से छुटकारा पाने के लिए प्रथागत है। आइए उत्तर में गलत अंश से छुटकारा पाएं। ऐसा करने के लिए, इसके पूरे भाग का चयन करें:

जैसा कि आप देख सकते हैं, समान हर वाले भिन्नों को घटाने में कुछ भी जटिल नहीं है। निम्नलिखित नियमों को समझना पर्याप्त है:

  • एक भिन्न से दूसरे को घटाने के लिए, आपको दूसरे भिन्न के अंश को पहले भिन्न के अंश से घटाना होगा, और हर को वही छोड़ देना होगा;
  • यदि उत्तर गलत भिन्न निकला, तो आपको इसके पूरे भाग का चयन करना होगा।
  • भिन्न हर के साथ भिन्नों का घटाव

    उदाहरण के लिए, भिन्न में से भिन्न को घटाया जा सकता है, क्योंकि इन भिन्नों के हर समान होते हैं। लेकिन भिन्न में से भिन्न को घटाया नहीं जा सकता, क्योंकि इन भिन्नों के हर अलग-अलग होते हैं। ऐसे मामलों में, भिन्नों को समान (सामान्य) हर में घटाया जाना चाहिए।

    सार्व भाजक उसी सिद्धांत के अनुसार पाया जाता है जिसका उपयोग हमने भिन्न हर के साथ भिन्नों को जोड़ते समय किया था। सबसे पहले दोनों भिन्नों के हरों का LCM ज्ञात कीजिए। फिर एलसीएम को पहले अंश के हर से विभाजित किया जाता है और पहला अतिरिक्त कारक प्राप्त होता है, जिसे पहले अंश के ऊपर लिखा जाता है। इसी तरह, एलसीएम को दूसरे अंश के हर से विभाजित किया जाता है और दूसरा अतिरिक्त कारक प्राप्त होता है, जिसे दूसरे अंश के ऊपर लिखा जाता है।

    फिर भिन्नों को उनके अतिरिक्त कारकों से गुणा किया जाता है। इन संक्रियाओं के परिणामस्वरूप, भिन्न हर वाले भिन्न भिन्नों में बदल जाते हैं जिनके हर समान होते हैं। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे घटाना है।

    उदाहरण 1एक व्यंजक का मान ज्ञात कीजिए:

    सबसे पहले, हम दोनों भिन्नों के हरों का LCM ज्ञात करते हैं। पहली भिन्न का हर संख्या 3 है, और दूसरी भिन्न का हर संख्या 4 है। इन संख्याओं का सबसे छोटा सामान्य गुणज 12 है।

    एलसीएम (3 और 4) = 12

    अब वापस भिन्नों पर और

    आइए पहले भिन्न के लिए एक अतिरिक्त गुणनखंड खोजें। ऐसा करने के लिए, हम एलसीएम को पहले अंश के हर से विभाजित करते हैं। LCM संख्या 12 है, और पहली भिन्न का हर संख्या 3 है। 12 को 3 से विभाजित करने पर, हमें 4 मिलता है। हम पहली भिन्न के ऊपर चार लिखते हैं:

    हम दूसरे अंश के साथ भी ऐसा ही करते हैं। हम LCM को दूसरे भिन्न के हर से भाग देते हैं। LCM संख्या 12 है, और दूसरी भिन्न का हर 4 संख्या है। 12 को 4 से विभाजित करने पर, हमें 3 प्राप्त होता है। हम दूसरी भिन्न पर त्रिगुण लिखते हैं:

    अब हम सब घटाव के लिए तैयार हैं। यह भिन्नों को उनके अतिरिक्त कारकों से गुणा करने के लिए बनी हुई है:

    हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके हर समान थे। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे घटाना है। आइए इस उदाहरण को अंत तक पूरा करें:

    जवाब मिला

    आइए एक चित्र का उपयोग करके हमारे समाधान को चित्रित करने का प्रयास करें। यदि आप पिज्जा से पिज्जा काटते हैं, तो आपको पिज्जा मिलता है।

    यह समाधान का विस्तृत संस्करण है। स्कूल में होने के कारण, हमें इस उदाहरण को छोटे तरीके से हल करना होगा। ऐसा समाधान इस तरह दिखेगा:

    भिन्नों की कमी और एक सामान्य हर को भी एक चित्र का उपयोग करके चित्रित किया जा सकता है। इन भिन्नों को एक उभयनिष्ठ हर में लाने पर, हमें भिन्न और . इन भिन्नों को समान पिज़्ज़ा स्लाइस द्वारा दर्शाया जाएगा, लेकिन इस बार उन्हें समान भिन्नों में विभाजित किया जाएगा (एक ही हर में घटाकर):

    पहला चित्र एक अंश दिखाता है (बारह में से आठ टुकड़े), और दूसरी तस्वीर एक अंश (बारह में से तीन टुकड़े) दिखाती है। आठ टुकड़ों में से तीन टुकड़े करने से हमें बारह में से पांच टुकड़े मिलते हैं। अंश इन पांच टुकड़ों का वर्णन करता है।

    उदाहरण 2व्यंजक का मान ज्ञात कीजिए

    इन भिन्नों के अलग-अलग हर होते हैं, इसलिए आपको पहले उन्हें समान (सामान्य) हर में लाना होगा।

    इन भिन्नों के हरों का LCM ज्ञात कीजिए।

    भिन्नों के हर संख्याएँ 10, 3 और 5 हैं। इन संख्याओं का न्यूनतम सामान्य गुणज 30 . है

    एलसीएम(10, 3, 5) = 30

    अब हम प्रत्येक भिन्न के लिए अतिरिक्त गुणनखंड पाते हैं। ऐसा करने के लिए, हम एलसीएम को प्रत्येक भिन्न के हर से विभाजित करते हैं।

    आइए पहले भिन्न के लिए एक अतिरिक्त गुणनखंड खोजें। एलसीएम संख्या 30 है, और पहले अंश का हर 10 है। 30 को 10 से विभाजित करने पर, हमें पहला अतिरिक्त कारक मिलता है। हम इसे पहले अंश पर लिखते हैं:

    अब हम दूसरी भिन्न के लिए एक अतिरिक्त गुणनखंड पाते हैं। LCM को दूसरे भिन्न के हर से भाग दें। LCM संख्या 30 है, और दूसरी भिन्न का हर संख्या 3 है। 30 को 3 से विभाजित करने पर, हमें दूसरा अतिरिक्त गुणनखंड 10 मिलता है। हम इसे दूसरे भिन्न के ऊपर लिखते हैं:

    अब हम तीसरे भिन्न के लिए एक अतिरिक्त गुणनखंड पाते हैं। एलसीएम को तीसरे भिन्न के हर से विभाजित करें। LCM संख्या 30 है, और तीसरे भिन्न का हर 5 है। 30 को 5 से विभाजित करने पर, हमें तीसरा अतिरिक्त गुणनखंड 6 मिलता है। हम इसे तीसरे भिन्न के ऊपर लिखते हैं:

    अब सब कुछ घटाव के लिए तैयार है। यह भिन्नों को उनके अतिरिक्त कारकों से गुणा करने के लिए बनी हुई है:

    हम इस निष्कर्ष पर पहुंचे कि भिन्न हर वाले भिन्न भिन्नों में बदल गए जिनके समान (सामान्य) भाजक हैं। और हम पहले से ही जानते हैं कि ऐसे भिन्नों को कैसे घटाना है। आइए इस उदाहरण को समाप्त करें।

    उदाहरण की निरंतरता एक पंक्ति में फिट नहीं होगी, इसलिए हम निरंतरता को अगली पंक्ति में ले जाते हैं। नई लाइन पर बराबर चिह्न (=) के बारे में मत भूलना:

    उत्तर सही अंश निकला, और सब कुछ हमें सूट करता है, लेकिन यह बहुत बोझिल और बदसूरत है। हमें इसे सरल और सौंदर्य की दृष्टि से अधिक आकर्षक बनाना चाहिए। क्या किया जा सकता है? आप इस अंश को कम कर सकते हैं। याद रखें कि अंश का घटाना अंश और हर के सबसे बड़े सामान्य भाजक द्वारा अंश और हर का विभाजन है।

    किसी भिन्न को सही ढंग से कम करने के लिए, आपको इसके अंश और हर को संख्याओं 20 और 30 के सबसे बड़े सामान्य भाजक (GCD) से विभाजित करना होगा।

    एनओसी के साथ जीसीडी को भ्रमित न करें। सबसे आम गलती कई शुरुआती करते हैं। GCD सबसे बड़ा सामान्य भाजक है। हम इसे भिन्न में कमी के लिए पाते हैं।

    और LCM सबसे छोटा सामान्य गुणज है। हम इसे समान (सामान्य) हर में भिन्न लाने के लिए पाते हैं।

    अब हम संख्या 20 और 30 का सबसे बड़ा उभयनिष्ठ भाजक (gcd) ज्ञात करेंगे।

    तो, हम संख्या 20 और 30 के लिए GCD पाते हैं:

    जीसीडी (20 और 30) = 10

    अब हम अपने उदाहरण पर लौटते हैं और भिन्न के अंश और हर को 10 से विभाजित करते हैं:

    अच्छा जवाब मिला

    भिन्न को किसी संख्या से गुणा करना

    किसी भिन्न को किसी संख्या से गुणा करने के लिए, आपको दिए गए भिन्न के अंश को इस संख्या से गुणा करना होगा, और हर को वही छोड़ देना होगा।

    उदाहरण 1. अंश को संख्या 1 से गुणा करें।

    भिन्न के अंश को संख्या 1 . से गुणा करें

    प्रविष्टि को आधा 1 बार लेने के रूप में समझा जा सकता है। उदाहरण के लिए, यदि आप 1 बार पिज़्ज़ा लेते हैं, तो आपको पिज़्ज़ा मिलता है

    गुणन के नियमों से, हम जानते हैं कि यदि गुणक और गुणक को आपस में बदल दिया जाए, तो गुणनफल नहीं बदलेगा। यदि व्यंजक को , के रूप में लिखा जाता है, तो गुणनफल अभी भी के बराबर होगा। फिर से, एक पूर्णांक और एक भिन्न को गुणा करने का नियम काम करता है:

    इस प्रविष्टि को इकाई का आधा भाग लेने के रूप में समझा जा सकता है। उदाहरण के लिए, यदि 1 पूरा पिज्जा है और हम उसका आधा हिस्सा लेते हैं, तो हमारे पास पिज्जा होगा:

    उदाहरण 2. व्यंजक का मान ज्ञात कीजिए

    भिन्न के अंश को 4 . से गुणा करें

    व्यंजक को दो चौथाई 4 बार लेने के रूप में समझा जा सकता है। उदाहरण के लिए, यदि आप 4 बार पिज्जा लेते हैं, तो आपको दो पूरे पिज्जा मिलते हैं।

    और यदि हम गुणक और गुणक को स्थानों में अदला-बदली करते हैं, तो हमें व्यंजक प्राप्त होता है। यह भी 2 के बराबर होगा। इस अभिव्यक्ति को चार पूरे पिज्जा से दो पिज्जा लेने के रूप में समझा जा सकता है:

    भिन्नों का गुणन

    भिन्नों को गुणा करने के लिए, आपको उनके अंशों और हरों को गुणा करना होगा। यदि उत्तर गलत भिन्न है, तो आपको उसमें पूरे भाग का चयन करना होगा।

    उदाहरण 1व्यंजक का मान ज्ञात कीजिए।

    जवाब मिला। इस अंश को कम करना वांछनीय है। भिन्न को 2 से कम किया जा सकता है। फिर अंतिम समाधान निम्नलिखित रूप लेगा:

    अभिव्यक्ति को आधा पिज्जा से पिज्जा लेने के रूप में समझा जा सकता है। मान लें कि हमारे पास आधा पिज्जा है:

    इस आधे से दो तिहाई कैसे लें? सबसे पहले आपको इस आधे हिस्से को तीन बराबर भागों में बांटना होगा:

    और इन तीन टुकड़ों में से दो ले लो:

    हमें पिज्जा मिलेगा। याद रखें कि पिज्जा कैसा दिखता है जिसे तीन भागों में बांटा गया है:

    इस पिज़्ज़ा से एक स्लाइस और हमने जो दो स्लाइस लिए हैं, उनके आयाम समान होंगे:

    दूसरे शब्दों में हम बात कर रहे हैं उसी पिज़्ज़ा साइज़ की। इसलिए, व्यंजक का मान है

    उदाहरण 2. व्यंजक का मान ज्ञात कीजिए

    पहले भिन्न के अंश को दूसरे भिन्न के अंश से और पहले भिन्न के हर को दूसरे भिन्न के हर से गुणा करें:

    उत्तर एक अनुचित अंश है। आइए इसका एक पूरा हिस्सा लें:

    उदाहरण 3व्यंजक का मान ज्ञात कीजिए

    उत्तर सही अंश निकला, लेकिन घटाया जाए तो अच्छा होगा। इस भिन्न को कम करने के लिए, इसे अंश और हर के gcd से विभाजित किया जाना चाहिए। तो, आइए 105 और 450 की संख्याओं का GCD ज्ञात करें:

    (105 और 150) के लिए GCD 15 . है

    अब हम अपने उत्तर के अंश और हर को GCD में विभाजित करते हैं:

    एक पूर्णांक को भिन्न के रूप में निरूपित करना

    किसी भी पूर्ण संख्या को भिन्न के रूप में दर्शाया जा सकता है। उदाहरण के लिए, संख्या 5 को इस रूप में दर्शाया जा सकता है। इससे, पाँच का अर्थ नहीं बदलेगा, क्योंकि अभिव्यक्ति का अर्थ है "पाँच की संख्या एक से विभाजित", और यह, जैसा कि आप जानते हैं, पाँच के बराबर है:

    रिवर्स नंबर

    अब हम गणित के एक बहुत ही रोचक विषय से परिचित होंगे। इसे "रिवर्स नंबर" कहा जाता है।

    परिभाषा। संख्या के विपरीत एक वह संख्या है जिसे गुणा करने पर एक एक इकाई देता है।

    आइए एक चर के बजाय इस परिभाषा में स्थानापन्न करें एकसंख्या 5 और परिभाषा को पढ़ने का प्रयास करें:

    संख्या के विपरीत 5 वह संख्या है जिसे गुणा करने पर 5 एक इकाई देता है।

    क्या ऐसी कोई संख्या ज्ञात करना संभव है जिसे 5 से गुणा करने पर एक प्राप्त हो? यह पता चला है कि आप कर सकते हैं। आइए पाँच को भिन्न के रूप में निरूपित करें:

    फिर इस भिन्न को अपने आप से गुणा करें, बस अंश और हर की अदला-बदली करें। दूसरे शब्दों में, भिन्न को अपने आप से गुणा करें, केवल उल्टा:

    इसका क्या परिणाम होगा? यदि हम इस उदाहरण को हल करना जारी रखते हैं, तो हमें एक मिलता है:

    इसका मतलब है कि संख्या 5 का विलोम वह संख्या है, क्योंकि जब 5 को एक से गुणा किया जाता है, तो एक प्राप्त होता है।

    व्युत्क्रम किसी अन्य पूर्णांक के लिए भी पाया जा सकता है।

    • 3 का व्युत्क्रम भिन्न होता है
    • 4 का व्युत्क्रम भिन्न होता है
    • आप किसी अन्य भिन्न का व्युत्क्रम भी ज्ञात कर सकते हैं। ऐसा करने के लिए, इसे पलटने के लिए पर्याप्त है।

    ) और हर द्वारा हर (हमें उत्पाद का हर मिलता है)।

    भिन्न गुणन सूत्र:

    उदाहरण के लिए:

    अंशों और हरों के गुणन के साथ आगे बढ़ने से पहले, भिन्न में कमी की संभावना की जांच करना आवश्यक है। यदि आप भिन्न को कम करने का प्रबंधन करते हैं, तो आपके लिए गणना करना जारी रखना आसान होगा।

    साधारण भिन्न का भिन्न से भाग।

    एक प्राकृत संख्या वाले भिन्नों का विभाजन।

    यह उतना डरावना नहीं है जितना लगता है। जैसा कि जोड़ के मामले में, हम हर में एक इकाई के साथ एक पूर्णांक को भिन्न में परिवर्तित करते हैं। उदाहरण के लिए:

    मिश्रित भिन्नों का गुणन।

    भिन्नों को गुणा करने के नियम (मिश्रित):

    • मिश्रित भिन्नों को अनुचित में बदलना;
    • भिन्नों के अंशों और हरों को गुणा करें;
    • हम अंश को कम करते हैं;
    • यदि हमें अनुचित भिन्न मिलता है, तो हम अनुचित भिन्न को मिश्रित भिन्न में बदल देते हैं।

    टिप्पणी!मिश्रित भिन्न को किसी अन्य मिश्रित भिन्न से गुणा करने के लिए, आपको पहले उन्हें अनुचित भिन्नों के रूप में लाना होगा, और फिर साधारण भिन्नों को गुणा करने के नियम के अनुसार गुणा करना होगा।

    किसी भिन्न को प्राकृत संख्या से गुणा करने का दूसरा तरीका।

    किसी साधारण भिन्न को किसी संख्या से गुणा करने की दूसरी विधि का उपयोग करना अधिक सुविधाजनक होता है।

    टिप्पणी!किसी भिन्न को एक प्राकृत संख्या से गुणा करने के लिए, भिन्न के हर को इस संख्या से विभाजित करना आवश्यक है, और अंश को अपरिवर्तित छोड़ दें।

    उपरोक्त उदाहरण से, यह स्पष्ट है कि यह विकल्प उपयोग करने के लिए अधिक सुविधाजनक है जब एक अंश के हर को एक प्राकृतिक संख्या से शेष के बिना विभाजित किया जाता है।

    बहुस्तरीय अंश।

    हाई स्कूल में, तीन-कहानी (या अधिक) अंश अक्सर पाए जाते हैं। उदाहरण:

    ऐसे भिन्न को उसके सामान्य रूप में लाने के लिए, 2 बिंदुओं से विभाजन का उपयोग किया जाता है:

    टिप्पणी!भिन्नों को विभाजित करते समय, विभाजन का क्रम बहुत महत्वपूर्ण होता है। सावधान रहें, यहां भ्रमित होना आसान है।

    टिप्पणी, उदाहरण के लिए:

    एक को किसी भिन्न से भाग देने पर, परिणाम वही भिन्न होगा, केवल उल्टा:

    भिन्नों को गुणा और भाग करने के लिए व्यावहारिक सुझाव:

    1. भिन्नात्मक अभिव्यक्तियों के साथ काम करने में सबसे महत्वपूर्ण बात सटीकता और सावधानी है। सभी गणनाएं सावधानीपूर्वक और सटीक, एकाग्र और स्पष्ट रूप से करें। अपने दिमाग में गणनाओं में भ्रमित होने की तुलना में मसौदे में कुछ अतिरिक्त पंक्तियों को लिखना बेहतर है।

    2. विभिन्न प्रकार के भिन्नों वाले कार्यों में - साधारण भिन्नों के प्रकार पर जाएँ।

    3. हम सभी भिन्नों को तब तक घटाते हैं जब तक कि इसे कम करना संभव न हो।

    4. हम 2 बिंदुओं के माध्यम से विभाजन का उपयोग करते हुए बहु-स्तरीय भिन्नात्मक व्यंजकों को साधारण व्यंजकों में लाते हैं।

    5. हम केवल भिन्न को पलट कर इकाई को अपने दिमाग में भिन्न में विभाजित करते हैं।

    पांचवीं शताब्दी ईसा पूर्व में, एलिया के प्राचीन यूनानी दार्शनिक ज़ेनो ने अपने प्रसिद्ध एपोरिया तैयार किए, जिनमें से सबसे प्रसिद्ध एपोरिया "अकिलीज़ एंड द कछुआ" है। यहां बताया गया है कि यह कैसा लगता है:

    मान लीजिए कि अकिलीस कछुए से दस गुना तेज दौड़ता है और उससे एक हजार कदम पीछे है। जिस समय के दौरान अकिलीज़ इतनी दूरी चलाता है, कछुआ उसी दिशा में सौ कदम रेंगता है। जब अकिलीज़ सौ कदम दौड़ चुका होता है, तो कछुआ दस कदम और रेंगता है, और इसी तरह। प्रक्रिया अनिश्चित काल तक जारी रहेगी, अकिलीज़ कछुआ को कभी नहीं पकड़ पाएगा।

    यह तर्क बाद की सभी पीढ़ियों के लिए एक तार्किक आघात बन गया। अरस्तू, डायोजनीज, कांट, हेगेल, गिल्बर्ट ... उन सभी को, एक तरह से या किसी अन्य, ज़ेनो के अपोरिया माना जाता है। झटका इतना जोरदार था कि " ... वर्तमान समय में चर्चा जारी है, वैज्ञानिक समुदाय अभी तक विरोधाभासों के सार के बारे में एक आम राय में आने में कामयाब नहीं हुआ है ... गणितीय विश्लेषण, सेट सिद्धांत, नए भौतिक और दार्शनिक दृष्टिकोण इस मुद्दे के अध्ययन में शामिल थे। ; उनमें से कोई भी समस्या का सार्वभौमिक रूप से स्वीकृत समाधान नहीं बन पाया ..."[विकिपीडिया," ज़ेनो के एपोरियास "]। हर कोई समझता है कि उन्हें मूर्ख बनाया जा रहा है, लेकिन कोई नहीं समझता कि धोखा क्या है।

    गणित के दृष्टिकोण से, ज़ेनो ने अपने एपोरिया में मूल्य से संक्रमण को स्पष्ट रूप से प्रदर्शित किया। यह संक्रमण स्थिरांक के बजाय आवेदन करने का तात्पर्य है। जहां तक ​​मैं समझता हूं, माप की परिवर्तनीय इकाइयों को लागू करने के लिए गणितीय उपकरण या तो अभी तक विकसित नहीं हुआ है, या इसे ज़ेनो के एपोरिया पर लागू नहीं किया गया है। हमारे सामान्य तर्क का प्रयोग हमें एक जाल में ले जाता है। हम, सोच की जड़ता से, समय की निरंतर इकाइयों को व्युत्क्रम पर लागू करते हैं। भौतिक दृष्टिकोण से, ऐसा लगता है कि जब अकिलीज़ कछुए को पकड़ता है, तो समय पूरी तरह से रुक जाता है। यदि समय रुक जाता है, तो अकिलीज़ कछुआ से आगे नहीं निकल सकता।

    अगर हम उस तर्क को बदल दें जिसके हम आदी हैं, तो सब कुछ ठीक हो जाता है। अखिलेश निरंतर गति से दौड़ता है। इसके पथ का प्रत्येक बाद का खंड पिछले वाले की तुलना में दस गुना छोटा है। तदनुसार, इस पर काबू पाने में लगने वाला समय पिछले वाले की तुलना में दस गुना कम है। यदि हम इस स्थिति में "अनंत" की अवधारणा को लागू करते हैं, तो यह कहना सही होगा कि "अकिलीज़ असीम रूप से जल्दी से कछुए से आगे निकल जाएगा।"

    इस तार्किक जाल से कैसे बचें? समय की निरंतर इकाइयों में बने रहें और पारस्परिक मूल्यों पर स्विच न करें। ज़ेनो की भाषा में, यह इस तरह दिखता है:

    जिस समय में अकिलीस को एक हजार कदम चलने में लगता है, उसी दिशा में कछुआ सौ कदम रेंगता है। अगले समय अंतराल के दौरान, पहले के बराबर, अकिलीज़ एक और हज़ार कदम चलाएगा, और कछुआ एक सौ कदम क्रॉल करेगा। अब अकिलीस कछुआ से आठ सौ कदम आगे है।

    यह दृष्टिकोण बिना किसी तार्किक विरोधाभास के वास्तविकता का पर्याप्त रूप से वर्णन करता है। लेकिन यह समस्या का पूर्ण समाधान नहीं है। प्रकाश की गति की दुर्गमता के बारे में आइंस्टीन का कथन ज़ेनो के एपोरिया "अकिलीज़ एंड द कछुआ" के समान है। हमें अभी इस समस्या का अध्ययन, पुनर्विचार और समाधान करना है। और समाधान को असीम रूप से बड़ी संख्या में नहीं, बल्कि माप की इकाइयों में खोजा जाना चाहिए।

    ज़ेनो का एक और दिलचस्प एपोरिया उड़ते हुए तीर के बारे में बताता है:

    उड़ता हुआ तीर गतिहीन होता है, क्योंकि वह हर क्षण विरामावस्था में होता है, और चूँकि वह प्रत्येक क्षण विराम में होता है, इसलिए वह सदैव विराम में रहता है।

    इस एपोरिया में, तार्किक विरोधाभास को बहुत सरलता से दूर किया जाता है - यह स्पष्ट करने के लिए पर्याप्त है कि प्रत्येक क्षण में उड़ने वाला तीर अंतरिक्ष में विभिन्न बिंदुओं पर आराम करता है, जो वास्तव में गति है। यहां एक और बात ध्यान देने योग्य है। सड़क पर एक कार की एक तस्वीर से, उसके चलने के तथ्य या उससे दूरी का निर्धारण करना असंभव है। कार की गति के तथ्य को निर्धारित करने के लिए, एक ही बिंदु से समय में अलग-अलग बिंदुओं पर ली गई दो तस्वीरों की आवश्यकता होती है, लेकिन उनका उपयोग दूरी निर्धारित करने के लिए नहीं किया जा सकता है। कार की दूरी निर्धारित करने के लिए, आपको एक ही समय में अंतरिक्ष में विभिन्न बिंदुओं से ली गई दो तस्वीरों की आवश्यकता होती है, लेकिन आप उनसे गति के तथ्य को निर्धारित नहीं कर सकते हैं (बेशक, आपको गणना के लिए अतिरिक्त डेटा की आवश्यकता है, त्रिकोणमिति आपकी मदद करेगी) . मैं जो विशेष रूप से इंगित करना चाहता हूं वह यह है कि समय में दो बिंदु और अंतरिक्ष में दो बिंदु दो अलग-अलग चीजें हैं जिन्हें भ्रमित नहीं किया जाना चाहिए क्योंकि वे अन्वेषण के विभिन्न अवसर प्रदान करते हैं।

    बुधवार, 4 जुलाई 2018

    बहुत अच्छी तरह से विकिपीडिया में सेट और मल्टीसेट के बीच के अंतरों का वर्णन किया गया है। हम देखो।

    जैसा कि आप देख सकते हैं, "सेट में दो समान तत्व नहीं हो सकते", लेकिन यदि सेट में समान तत्व हैं, तो ऐसे सेट को "मल्टीसेट" कहा जाता है। विवेकशील प्राणी बेतुकेपन के ऐसे तर्क को कभी नहीं समझेंगे। यह बात करने वाले तोते और प्रशिक्षित बंदरों का स्तर है, जिसमें मन "पूरी तरह से" शब्द से अनुपस्थित है। गणितज्ञ सामान्य प्रशिक्षकों के रूप में कार्य करते हैं, अपने बेतुके विचारों का हमें प्रचार करते हैं।

    एक बार की बात है, पुल का निर्माण करने वाले इंजीनियर पुल के परीक्षणों के दौरान पुल के नीचे एक नाव में थे। पुल ढह गया तो उसकी रचना के मलबे के नीचे औसत दर्जे का इंजीनियर मर गया। यदि पुल भार का सामना कर सकता है, तो प्रतिभाशाली इंजीनियर ने अन्य पुलों का निर्माण किया।

    कोई फर्क नहीं पड़ता कि गणितज्ञ "माइंड मी, आई एम इन द हाउस" वाक्यांश के पीछे कैसे छिपते हैं, या बल्कि "गणित अमूर्त अवधारणाओं का अध्ययन करता है", एक गर्भनाल है जो उन्हें वास्तविकता से जोड़ती है। यह गर्भनाल धन है। आइए हम गणितीय समुच्चय सिद्धांत को स्वयं गणितज्ञों पर लागू करें।

    हमने गणित का बहुत अच्छा अध्ययन किया और अब हम कैश डेस्क पर बैठे हैं, वेतन दे रहे हैं। यहाँ एक गणितज्ञ अपने पैसे के लिए हमारे पास आता है। हम उसके लिए पूरी राशि गिनते हैं और उसे अपनी मेज पर अलग-अलग ढेर में रख देते हैं, जिसमें हम एक ही मूल्य के बिल डालते हैं। फिर हम प्रत्येक ढेर से एक बिल लेते हैं और गणितज्ञ को उसका "गणितीय वेतन सेट" देते हैं। हम गणित की व्याख्या करते हैं कि वह शेष बिल तभी प्राप्त करेगा जब वह यह साबित कर देगा कि समान तत्वों के बिना सेट समान तत्वों वाले सेट के बराबर नहीं है। मज़ा यहां शुरू होता है।

    सबसे पहले, डिप्टी का तर्क काम करेगा: "आप इसे दूसरों पर लागू कर सकते हैं, लेकिन मुझ पर नहीं!" इसके अलावा, आश्वासन शुरू हो जाएगा कि एक ही मूल्यवर्ग के बैंक नोटों पर अलग-अलग बैंकनोट नंबर हैं, जिसका अर्थ है कि उन्हें समान तत्व नहीं माना जा सकता है। खैर, हम वेतन को सिक्कों में गिनते हैं - सिक्कों पर कोई संख्या नहीं होती है। यहां गणितज्ञ भौतिकी को याद करेंगे: अलग-अलग सिक्कों में अलग-अलग मात्रा में गंदगी होती है, प्रत्येक सिक्के के लिए क्रिस्टल संरचना और परमाणुओं की व्यवस्था अद्वितीय होती है ...

    और अब मेरे पास सबसे दिलचस्प सवाल है: वह सीमा कहां है जिसके आगे एक मल्टीसेट के तत्व एक सेट के तत्वों में बदल जाते हैं और इसके विपरीत? ऐसी रेखा मौजूद नहीं है - सब कुछ शेमस द्वारा तय किया जाता है, यहां विज्ञान भी करीब नहीं है।

    यहाँ देखो। हम समान क्षेत्र वाले फुटबॉल स्टेडियमों का चयन करते हैं। खेतों का क्षेत्रफल समान है, जिसका अर्थ है कि हमारे पास एक मल्टीसेट है। लेकिन अगर हम उन्हीं स्टेडियमों के नामों पर विचार करें तो हमें बहुत कुछ मिलता है, क्योंकि नाम अलग-अलग होते हैं। जैसा कि आप देख सकते हैं, तत्वों का एक ही सेट एक ही समय में एक सेट और एक मल्टीसेट दोनों है। कितना सही? और यहाँ गणितज्ञ-शमन-शुलर अपनी आस्तीन से एक ट्रम्प इक्का निकालता है और हमें एक सेट या एक मल्टीसेट के बारे में बताना शुरू करता है। किसी भी मामले में, वह हमें विश्वास दिलाएगा कि वह सही है।

    यह समझने के लिए कि आधुनिक शेमैन सेट सिद्धांत के साथ कैसे काम करते हैं, इसे वास्तविकता से बांधते हुए, एक प्रश्न का उत्तर देने के लिए पर्याप्त है: एक सेट के तत्व दूसरे सेट के तत्वों से कैसे भिन्न होते हैं? मैं आपको बिना किसी "एक पूरे के रूप में बोधगम्य" या "एक पूरे के रूप में बोधगम्य नहीं" के बिना दिखाऊंगा।

    रविवार, 18 मार्च 2018

    एक संख्या के अंकों का योग तंबूरा के साथ शेमस का नृत्य है, जिसका गणित से कोई लेना-देना नहीं है। हां, गणित के पाठों में हमें किसी संख्या के अंकों का योग ज्ञात करना और उसका उपयोग करना सिखाया जाता है, लेकिन वे उसके लिए शेमस हैं, अपने वंशजों को उनके कौशल और ज्ञान को सिखाने के लिए, अन्यथा शमां बस मर जाएंगे।

    क्या आपको सबूत चाहिए? विकिपीडिया खोलें और "संख्या के अंकों का योग" पृष्ठ खोजने का प्रयास करें। वह मौजूद नहीं है। गणित में ऐसा कोई सूत्र नहीं है जिससे आप किसी भी संख्या के अंकों का योग ज्ञात कर सकें। आखिरकार, संख्याएँ ग्राफिक प्रतीक हैं जिनके साथ हम संख्याएँ लिखते हैं, और गणित की भाषा में, कार्य इस तरह लगता है: "किसी भी संख्या का प्रतिनिधित्व करने वाले ग्राफिक प्रतीकों का योग ज्ञात करें।" गणितज्ञ इस समस्या को हल नहीं कर सकते, लेकिन शेमस इसे मूल रूप से कर सकते हैं।

    आइए देखें कि दी गई संख्या के अंकों का योग ज्ञात करने के लिए हम क्या और कैसे करते हैं। और इसलिए, मान लें कि हमारे पास संख्या 12345 है। इस संख्या के अंकों का योग ज्ञात करने के लिए क्या करना होगा? आइए क्रम में सभी चरणों पर विचार करें।

    1. कागज के एक टुकड़े पर संख्या लिखिए। हमने क्या किया है? हमने संख्या को एक संख्या ग्राफिक प्रतीक में बदल दिया है। यह कोई गणितीय क्रिया नहीं है।

    2. हमने एक प्राप्त तस्वीर को अलग-अलग संख्याओं वाले कई चित्रों में काट दिया। चित्र काटना कोई गणितीय क्रिया नहीं है।

    3. अलग-अलग ग्राफिक वर्णों को संख्याओं में बदलें। यह कोई गणितीय क्रिया नहीं है।

    4. परिणामी संख्याओं को जोड़ें। अब वह गणित है।

    संख्या 12345 के अंकों का योग 15 है। ये गणितज्ञों द्वारा उपयोग किए जाने वाले शेमस के "काटने और सिलाई के पाठ्यक्रम" हैं। लेकिन वह सब नहीं है।

    गणित की दृष्टि से इस बात से कोई फर्क नहीं पड़ता कि हम किस संख्या प्रणाली में अंक लिखते हैं। तो, विभिन्न संख्या प्रणालियों में, एक ही संख्या के अंकों का योग भिन्न होगा। गणित में, संख्या प्रणाली को संख्या के दाईं ओर एक सबस्क्रिप्ट के रूप में दर्शाया जाता है। बड़ी संख्या 12345 के साथ, मैं अपने सिर को मूर्ख नहीं बनाना चाहता, लेख से 26 नंबर पर विचार करें। आइए इस नंबर को बाइनरी, ऑक्टल, डेसीमल और हेक्साडेसिमल नंबर सिस्टम में लिखें। हम माइक्रोस्कोप के तहत प्रत्येक चरण पर विचार नहीं करेंगे, हम पहले ही ऐसा कर चुके हैं। आइए परिणाम देखें।

    जैसा कि आप देख सकते हैं, विभिन्न संख्या प्रणालियों में, एक ही संख्या के अंकों का योग भिन्न होता है। इस परिणाम का गणित से कोई लेना-देना नहीं है। यह ऐसा है जैसे किसी आयत का क्षेत्रफल मीटर और सेंटीमीटर में निकालने पर आपको पूरी तरह से अलग परिणाम मिलेंगे।

    सभी संख्या प्रणालियों में शून्य समान दिखता है और इसमें अंकों का कोई योग नहीं होता है। यह इस तथ्य के पक्ष में एक और तर्क है कि . गणितज्ञों के लिए एक प्रश्न: गणित में यह कैसे दर्शाया जाता है कि जो एक संख्या नहीं है? क्या, गणितज्ञों के लिए, संख्याओं के अलावा कुछ भी मौजूद नहीं है? शेमस के लिए, मैं इसकी अनुमति दे सकता हूं, लेकिन वैज्ञानिकों के लिए, नहीं। वास्तविकता केवल संख्या के बारे में नहीं है।

    प्राप्त परिणाम को इस बात का प्रमाण माना जाना चाहिए कि संख्या प्रणाली संख्याओं के मापन की इकाइयाँ हैं। आखिरकार, हम माप की विभिन्न इकाइयों के साथ संख्याओं की तुलना नहीं कर सकते। यदि एक ही मात्रा की माप की विभिन्न इकाइयों के साथ एक ही क्रिया की तुलना करने के बाद अलग-अलग परिणाम मिलते हैं, तो इसका गणित से कोई लेना-देना नहीं है।

    वास्तविक गणित क्या है? यह तब होता है जब गणितीय क्रिया का परिणाम संख्या के मूल्य, उपयोग की गई माप की इकाई और इस क्रिया को करने वाले पर निर्भर नहीं करता है।

    दरवाजे पर हस्ताक्षर करें दरवाजा खोलता है और कहता है:

    आउच! क्या यह महिला शौचालय नहीं है?
    - जवान महिला! स्वर्ग में स्वर्गारोहण पर आत्माओं की अनिश्चितकालीन पवित्रता का अध्ययन करने के लिए यह एक प्रयोगशाला है! शीर्ष पर निंबस और ऊपर तीर। और क्या शौचालय?

    महिला... शीर्ष पर एक प्रभामंडल और नीचे एक तीर नर है।

    यदि आपके पास दिन में कई बार आपकी आंखों के सामने डिजाइन कला का ऐसा काम है,

    तब यह आश्चर्य की बात नहीं है कि आप अचानक अपनी कार में एक अजीब आइकन पाते हैं:

    व्यक्तिगत रूप से, मैं अपने आप को एक शिकार करने वाले व्यक्ति (एक तस्वीर) (कई चित्रों की संरचना: ऋण चिह्न, संख्या चार, डिग्री पदनाम) में शून्य से चार डिग्री देखने का प्रयास करता हूं। और मैं इस लड़की को मूर्ख नहीं मानता जो भौतिकी नहीं जानती। उसके पास ग्राफिक छवियों की धारणा का एक चाप स्टीरियोटाइप है। और गणितज्ञ हमें हर समय यही सिखाते हैं। यहाँ एक उदाहरण है।

    1A "माइनस फोर डिग्री" या "वन ए" नहीं है। यह हेक्साडेसिमल संख्या प्रणाली में "पोपिंग मैन" या संख्या "छब्बीस" है। जो लोग इस संख्या प्रणाली में लगातार काम करते हैं, वे संख्या और अक्षर को एक ग्राफिक प्रतीक के रूप में स्वचालित रूप से देखते हैं।

    अंशों का गुणन और विभाजन।

    ध्यान!
    अतिरिक्त हैं
    विशेष धारा 555 में सामग्री।
    उन लोगों के लिए जो दृढ़ता से "बहुत नहीं ..."
    और उन लोगों के लिए जो "बहुत ज्यादा...")

    यह ऑपरेशन जोड़-घटाव की तुलना में बहुत अच्छा है! क्योंकि यह आसान है। मैं आपको याद दिलाता हूं: एक अंश को एक अंश से गुणा करने के लिए, आपको अंशों को गुणा करना होगा (यह परिणाम का अंश होगा) और हर (यह हर होगा)। वह है:

    उदाहरण के लिए:

    सब कुछ बेहद सरल है. और कृपया एक सामान्य हर की तलाश न करें! यहां इसकी जरूरत नहीं है ...

    किसी भिन्न को भिन्न से भाग देने के लिए, आपको पलटना होगा दूसरा(यह महत्वपूर्ण है!) भिन्न और उन्हें गुणा करें, अर्थात:

    उदाहरण के लिए:

    यदि पूर्णांकों और भिन्नों के साथ गुणा या भाग पकड़ा जाता है, तो कोई बात नहीं। इसके अलावा, हम हर में एक इकाई के साथ एक पूर्ण संख्या से एक अंश बनाते हैं - और जाओ! उदाहरण के लिए:

    हाई स्कूल में, आपको अक्सर तीन-कहानी (या चार-कहानी!) भिन्नों से निपटना पड़ता है। उदाहरण के लिए:

    इस भिन्न को सभ्य रूप में कैसे लाया जाए? हाँ, बहुत आसान! दो बिंदुओं के माध्यम से विभाजन का प्रयोग करें:

    लेकिन विभाजन के आदेश के बारे में मत भूलना! गुणन के विपरीत, यह यहाँ बहुत महत्वपूर्ण है! बेशक, हम 4:2 या 2:4 को भ्रमित नहीं करेंगे। लेकिन तीन मंजिला अंश में गलती करना आसान है। कृपया ध्यान दें, उदाहरण के लिए:

    पहले मामले में (बाईं ओर अभिव्यक्ति):

    दूसरे में (दाईं ओर अभिव्यक्ति):

    अंतर महसूस करें? 4 और 1/9!

    विभाजन का क्रम क्या है? या कोष्ठक, या (यहाँ के रूप में) क्षैतिज डैश की लंबाई। एक आँख विकसित करें। और अगर कोई कोष्ठक या डैश नहीं हैं, जैसे:

    फिर विभाजित-गुणा क्रम में, बाएं से दाएं!

    और एक और बहुत ही सरल और महत्वपूर्ण ट्रिक। डिग्री के साथ कार्यों में, यह आपके काम आएगा! आइए इकाई को किसी भिन्न से विभाजित करें, उदाहरण के लिए, 13/15 से:

    शॉट पलट गया! और यह हमेशा होता है। 1 को किसी भिन्न से भाग देने पर परिणाम वही भिन्न होता है, केवल उल्टा।

    भिन्नों के साथ यही सभी क्रियाएं हैं। बात काफी सरल है, लेकिन पर्याप्त से अधिक त्रुटियाँ देता है। व्यावहारिक सलाह पर ध्यान दें, और उनमें से कम (गलतियाँ) होंगी!

    व्यावहारिक सुझाव:

    1. भिन्नात्मक अभिव्यक्तियों के साथ काम करते समय सबसे महत्वपूर्ण बात सटीकता और सावधानी है! ये सामान्य शब्द नहीं हैं, शुभकामनाएँ नहीं! यह एक गंभीर आवश्यकता है! परीक्षा में सभी गणनाओं को एक पूर्ण कार्य के रूप में, एकाग्रता और स्पष्टता के साथ करें। अपने दिमाग में गणना करते समय गड़बड़ करने की तुलना में मसौदे में दो अतिरिक्त पंक्तियाँ लिखना बेहतर है।

    2. विभिन्न प्रकार के भिन्नों वाले उदाहरणों में - साधारण भिन्नों पर जाएं।

    3. हम सभी भिन्नों को स्टॉप तक कम करते हैं।

    4. हम दो बिंदुओं के माध्यम से विभाजन का उपयोग करके बहु-स्तरीय भिन्नात्मक अभिव्यक्तियों को साधारण लोगों तक कम करते हैं (हम विभाजन के क्रम का पालन करते हैं!)।

    5. हम केवल भिन्न को पलट कर इकाई को अपने दिमाग में भिन्न में विभाजित करते हैं।

    यहां वे कार्य हैं जिन्हें आपको पूरा करने की आवश्यकता है। सभी कार्यों के बाद उत्तर दिए जाते हैं। इस विषय की सामग्री और व्यावहारिक सलाह का प्रयोग करें। अनुमान लगाएं कि आप कितने उदाहरणों को सही ढंग से हल कर सकते हैं। पहली बार! कैलकुलेटर के बिना! और सही निष्कर्ष निकालें ...

    सही उत्तर याद रखें दूसरे (विशेषकर तीसरे) समय से प्राप्त - गिनती नहीं है!ऐसा कठोर जीवन है।

    इसलिए, परीक्षा मोड में हल करें ! वैसे यह परीक्षा की तैयारी है। हम एक उदाहरण हल करते हैं, हम जांचते हैं, हम निम्नलिखित को हल करते हैं। हमने सब कुछ तय कर लिया - हमने पहली से आखिरी तक फिर से जाँच की। लेकिन सिर्फ बाद मेंउत्तरों को देखो।

    गणना करें:

    क्या आपने तय कीया?

    उन उत्तरों की तलाश है जो आपसे मेल खाते हों। मैंने उन्हें विशेष रूप से एक गड़बड़ी में लिखा था, प्रलोभन से दूर, इसलिए बोलने के लिए ... ये रहे, उत्तर, अर्धविराम के साथ लिखे गए।

    0; 17/22; 3/4; 2/5; 1; 25.

    और अब हम निष्कर्ष निकालते हैं। अगर सब कुछ काम कर गया - आपके लिए खुश! भिन्नों के साथ प्राथमिक गणना आपकी समस्या नहीं है! आप अधिक गंभीर चीजें कर सकते हैं। अगर नहीं...

    तो आपको दो समस्याओं में से एक है। या दोनों एक साथ।) ज्ञान की कमी और (या) असावधानी। लेकिन यह व्याख्या करने योग्य समस्या।

    अगर आपको यह साइट पसंद है...

    वैसे, मेरे पास आपके लिए कुछ और दिलचस्प साइटें हैं।)

    आप उदाहरणों को हल करने का अभ्यास कर सकते हैं और अपने स्तर का पता लगा सकते हैं। तत्काल सत्यापन के साथ परीक्षण। सीखना - रुचि के साथ!)

    आप कार्यों और डेरिवेटिव से परिचित हो सकते हैं।

    किसी भिन्न को भिन्न से या भिन्न को किसी संख्या से सही ढंग से गुणा करने के लिए, आपको सरल नियमों को जानना होगा। अब हम इन नियमों का विस्तार से विश्लेषण करेंगे।

    भिन्न को भिन्न से गुणा करना।

    किसी भिन्न को भिन्न से गुणा करने के लिए, आपको अंशों के गुणनफल और इन भिन्नों के हरों के गुणनफल की गणना करनी होगी।

    \(\bf \frac(a)(b) \times \frac(c)(d) = \frac(a \times c)(b \times d)\\\)

    एक उदाहरण पर विचार करें:
    हम पहली भिन्न के अंश को दूसरे भिन्न के अंश से गुणा करते हैं, और हम पहली भिन्न के हर को दूसरे भिन्न के हर से भी गुणा करते हैं।

    \(\frac(6)(7) \times \frac(2)(3) = \frac(6 \times 2)(7 \times 3) = \frac(12)(21) = \frac(4 \ गुना 3)(7 \गुना 3) = \frac(4)(7)\\\)

    भिन्न \(\frac(12)(21) = \frac(4 \times 3)(7 \times 3) = \frac(4)(7)\\\) को 3 से घटा दिया गया है।

    भिन्न को किसी संख्या से गुणा करना।

    आइए नियम से शुरू करते हैं किसी भी संख्या को भिन्न \(\bf n = \frac(n)(1)\) के रूप में दर्शाया जा सकता है।

    आइए इस नियम का उपयोग गुणन के लिए करें।

    \(5 \times \frac(4)(7) = \frac(5)(1) \times \frac(4)(7) = \frac(5 \times 4)(1 \times 7) = \frac (20)(7) = 2\frac(6)(7)\\\)

    अनुचित भिन्न \(\frac(20)(7) = \frac(14 + 6)(7) = \frac(14)(7) + \frac(6)(7) = 2 + \frac(6)( 7)= 2\frac(6)(7)\\\) मिश्रित भिन्न में परिवर्तित।

    दूसरे शब्दों में, किसी संख्या को भिन्न से गुणा करते समय, संख्या को अंश से गुणा करें और हर को अपरिवर्तित छोड़ दें।उदाहरण:

    \(\frac(2)(5) \times 3 = \frac(2 \times 3)(5) = \frac(6)(5) = 1\frac(1)(5)\\\\\) \(\bf \frac(a)(b) \times c = \frac(a \times c)(b)\\\)

    मिश्रित भिन्नों का गुणन।

    मिश्रित भिन्नों को गुणा करने के लिए, आपको पहले प्रत्येक मिश्रित भिन्न को एक अनुचित भिन्न के रूप में प्रस्तुत करना होगा, और फिर गुणन नियम का उपयोग करना होगा। अंश को अंश से गुणा किया जाता है, हर को हर से गुणा किया जाता है।

    उदाहरण:
    \(2\frac(1)(4) \times 3\frac(5)(6) = \frac(9)(4) \times \frac(23)(6) = \frac(9 \times 23) (4 \गुना 6) = \frac(3 \गुना \रंग(लाल) (3) \बार 23)(4 \गुना 2 \गुना \रंग(लाल) (3)) = \frac(69)(8) = 8\frac(5)(8)\\\)

    पारस्परिक भिन्नों और संख्याओं का गुणन।

    भिन्न \(\bf \frac(a)(b)\) भिन्न का विलोम है \(\bf \frac(b)(a)\), बशर्ते a≠0,b≠0.
    भिन्न \(\bf \frac(a)(b)\) और \(\bf \frac(b)(a)\) को व्युत्क्रम कहा जाता है। व्युत्क्रम भिन्नों का गुणनफल 1 होता है।
    \(\bf \frac(a)(b) \times \frac(b)(a) = 1 \\\)

    उदाहरण:
    \(\frac(5)(9) \times \frac(9)(5) = \frac(45)(45) = 1\\\)

    संबंधित सवाल:
    किसी भिन्न को भिन्न से गुणा कैसे करें?
    उत्तर: साधारण भिन्नों का गुणनफल अंश के साथ अंश, हर के साथ हर का गुणन होता है। मिश्रित भिन्नों का गुणनफल प्राप्त करने के लिए, आपको उन्हें एक अनुचित भिन्न में बदलना होगा और नियमों के अनुसार गुणा करना होगा।

    भिन्न हर के साथ भिन्नों को कैसे गुणा करें?
    उत्तर: इससे कोई फर्क नहीं पड़ता कि भिन्नों के हर समान या भिन्न हैं, अंश के गुणनफल को अंश के साथ, हर के साथ हर के गुणन को खोजने के लिए नियम के अनुसार गुणन होता है।

    मिश्रित भिन्नों को कैसे गुणा करें?
    उत्तर: सबसे पहले आपको मिश्रित भिन्न को अनुचित भिन्न में बदलना है और फिर गुणन के नियमों के अनुसार गुणनफल ज्ञात करना है।

    किसी संख्या को भिन्न से गुणा कैसे करें?
    उत्तर: हम संख्या को अंश से गुणा करते हैं, और हर को वही छोड़ देते हैं।

    उदाहरण 1:
    उत्पाद की गणना करें: a) \(\frac(8)(9) \times \frac(7)(11)\) b) \(\frac(2)(15) \times \frac(10)(13) \ )

    समाधान:
    a) \(\frac(8)(9) \times \frac(7)(11) = \frac(8 \times 7)(9 \times 11) = \frac(56)(99)\\\\ \)
    बी) \(\frac(2)(15) \times \frac(10)(13) = \frac(2 \times 10)(15 \times 13) = \frac(2 \times 2 \times \color( लाल) (5))(3 \बार \रंग(लाल) (5) \बार 13) = \frac(4)(39)\)

    उदाहरण #2:
    किसी संख्या और भिन्न के गुणनफल की गणना करें: a) \(3 \times \frac(17)(23)\) b) \(\frac(2)(3) \times 11\)

    समाधान:
    a) \(3 \times \frac(17)(23) = \frac(3)(1) \times \frac(17)(23) = \frac(3 \times 17)(1 \times 23) = \frac(51)(23) = 2\frac(5)(23)\\\\\)
    बी) \(\frac(2)(3) \times 11 = \frac(2)(3) \times \frac(11)(1) = \frac(2 \times 11)(3 \times 1) = \frac(22)(3) = 7\frac(1)(3)\)

    उदाहरण #3:
    \(\frac(1)(3)\) का व्युत्क्रम लिखें?
    उत्तर: \(\frac(3)(1) = 3\)

    उदाहरण #4:
    दो पारस्परिक भिन्नों के गुणनफल की गणना करें: a) \(\frac(104)(215) \times \frac(215)(104)\)

    समाधान:
    ए) \(\frac(104)(215) \times \frac(215)(104) = 1\)

    उदाहरण #5:
    क्या परस्पर प्रतिलोम भिन्न हो सकते हैं:
    क) दोनों उचित भिन्न;
    बी) एक साथ अनुचित अंश;
    सी) एक ही समय में प्राकृतिक संख्याएं?

    समाधान:
    क) आइए पहले प्रश्न का उत्तर देने के लिए एक उदाहरण का उपयोग करें। भिन्न \(\frac(2)(3)\) उचित है, इसका व्युत्क्रम \(\frac(3)(2)\) के बराबर होगा - एक अनुचित भिन्न। उत्तर: नहीं।

    b) भिन्नों की लगभग सभी गणनाओं में, यह शर्त पूरी नहीं होती है, लेकिन कुछ संख्याएँ ऐसी होती हैं जो एक ही समय में एक अनुचित भिन्न होने की शर्त को पूरा करती हैं। उदाहरण के लिए, अनुचित भिन्न \(\frac(3)(3)\) है, इसका व्युत्क्रम \(\frac(3)(3)\) है। हमें दो अनुचित भिन्न मिलते हैं। उत्तर: हमेशा कुछ शर्तों के तहत नहीं, जब अंश और हर बराबर हों।

    ग) प्राकृत संख्याएँ वे संख्याएँ हैं जिनका उपयोग हम गिनती करते समय करते हैं, उदाहरण के लिए 1, 2, 3, .... यदि हम संख्या \(3 = \frac(3)(1)\) लें, तो इसका व्युत्क्रम \(\frac(1)(3)\) होगा। भिन्न \(\frac(1)(3)\) एक प्राकृत संख्या नहीं है। यदि हम सभी संख्याओं का अध्ययन करें, तो 1 को छोड़कर व्युत्क्रम हमेशा भिन्न होता है। यदि हम संख्या 1 लेते हैं, तो इसका व्युत्क्रम होगा \(\frac(1)(1) = \frac(1)(1) = 1\)। संख्या 1 एक प्राकृतिक संख्या है। उत्तर: वे एक साथ केवल एक स्थिति में प्राकृत संख्याएँ हो सकती हैं, यदि यह संख्या 1 है।

    उदाहरण #6:
    मिश्रित भिन्नों का गुणनफल करें: a) \(4 \times 2\frac(4)(5)\) b) \(1\frac(1)(4) \times 3\frac(2)(7)\ )

    समाधान:
    a) \(4 \times 2\frac(4)(5) = \frac(4)(1) \times \frac(14)(5) = \frac(56)(5) = 11\frac(1 )(5)\\\\ \)
    बी) \(1\frac(1)(4) \times 3\frac(2)(7) = \frac(5)(4) \times \frac(23)(7) = \frac(115)( 28) = 4\frac(3)(7)\)

    उदाहरण #7:
    क्या दो व्युत्क्रम संख्याएँ एक साथ मिश्रित संख्याएँ हो सकती हैं?

    आइए एक उदाहरण देखें। आइए एक मिश्रित भिन्न \(1\frac(1)(2)\) लें, इसका व्युत्क्रम ज्ञात करें, इसके लिए हम इसे एक अनुचित भिन्न में अनुवाद करते हैं \(1\frac(1)(2) = \frac(3)( 2) \) । इसका व्युत्क्रम \(\frac(2)(3)\) के बराबर होगा। भिन्न \(\frac(2)(3)\) एक उचित भिन्न है। उत्तर: दो परस्पर प्रतिलोम भिन्न एक ही समय में मिश्रित संख्या नहीं हो सकते हैं।

    संबंधित प्रकाशन