Паропроницаемость строительных материалов. Воздухопроницаемость ограждающих конструкций Расположение термоизолирующих слоев

ГОСТ 32493-2013

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МАТЕРИАЛЫ И ИЗДЕЛИЯ ТЕПЛОИЗОЛЯЦИОННЫЕ

Метод определения воздухопроницаемости и сопротивления воздухопроницанию

Materials and products the construction heatinsulating. Method of determination of air permeability and resistance to a air permeability


МКС 91.100.60

Дата введения 2015-01-01

Предисловие

Цели, основные принципы и основной порядок работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

1 РАЗРАБОТАН федеральным государственным бюджетным учреждением "Научно-исследовательский институт строительной физики Российской академии архитектуры и строительных наук" (НИИСФ РААСН)

2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство"

3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 14 ноября 2013 г. N 44-П)

За принятие стандарта проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97

Код страны по
МК (ИСО 3166) 004-97

Сокращенное наименование национального органа по стандартизации

Азербайджан

Азстандарт

Минэкономики Республики Армения

Беларусь

Госстандарт Республики Беларусь

Казахстан

Госстандарт Республики Казахстан

Киргизия

Кыргызстандарт

Молдова-Стандарт

Росстандарт

Таджикистан

Таджикстандарт

Узбекистан

Узстандарт

4 Приказом Федерального агентства по техническому регулированию и метрологии от 30 декабря 2013 г. N 2390-ст межгосударственный стандарт ГОСТ 32493-2013 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2015 г.

5 ВВЕДЕН ВПЕРВЫЕ


Информация об изменениях к настоящему стандарту публикуется в ежегодном информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячном информационном указателе "Национальные стандарты". В случае пересмотра (замены) или отмены настоящего стандарта соответствующее уведомление будет опубликовано в ежемесячном информационном указателе "Национальные стандарты". Соответствующая информация, уведомление и тексты размещаются также в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет

1 Область применения

1 Область применения

Настоящий стандарт распространяется на строительные теплоизоляционные материалы и изделия, изготовленные в заводских условиях, и устанавливает метод определения воздухопроницаемости и сопротивления воздухопроницанию.

2 Нормативные ссылки

В настоящем стандарте использованы нормативные ссылки на следующие межгосударственные стандарты:

ГОСТ 166-89 (ИСО 3599-76) Штангенциркули. Технические условия

ГОСТ 427-75 Линейки измерительные металлические. Технические условия

Примечание - При пользовании настоящим стандартом целесообразно проверить действие ссылочных стандартов в информационной системе общего пользования - на официальном сайте Федерального агентства по техническому регулированию и метрологии в сети Интернет или по ежегодному информационному указателю "Национальные стандарты", который опубликован по состоянию на 1 января текущего года, и по выпускам ежемесячного информационного указателя "Национальные стандарты" за текущий год. Если ссылочный стандарт заменен (изменен), то при пользовании настоящим стандартом следует руководствоваться заменяющим (измененным) стандартом. Если ссылочный стандарт отменен без замены, то положение, в котором дана ссылка на него, применяется в части, не затрагивающей эту ссылку.

3 Термины, определения и обозначения

3.1 Термины и определения

В настоящем стандарте применены следующие термины с соответствующими определениями.

3.1.1 воздухопроницаемость материала: Свойство материала пропускать воздух при наличии разности давлений воздуха на противоположных поверхностях образца материала, определяемая количеством воздуха, проходящим через единицу площади образца материала в единицу времени.

3.1.2 коэффициент воздухопроницаемости: Показатель, характеризующий воздухопроницаемость материала.

3.1.3 сопротивление воздухопроницанию: Показатель, характеризующий свойство образца материала препятствовать прохождению воздуха.

3.1.4 перепад давления: Разность давлений воздуха на противоположных поверхностях образца при проведении испытания.

3.1.5 плотность потока воздуха: Масса воздуха, проходящего в единицу времени через единицу площади поверхности образца, перпендикулярную направлению потока воздуха.

3.1.6 расход воздуха: Количество (объем) воздуха, проходящего через образец в единицу времени.

3.1.7 показатель режима фильтрации: Показатель степени перепада давления в уравнении зависимости массовой воздухопроницаемости образца от перепада давления.

3.1.8 толщина образца: Толщина образца в направлении потока воздуха.

3.2 Обозначения

Обозначения и единицы измерения основных параметров, применяемых при определении воздухопроницаемости, приведены в таблице 1.


Таблица 1

Параметр

Обозначение

Единица измерения

Площадь поперечного сечения образца, перпендикулярного направлению потока воздуха

Плотность потока воздуха

кг/(м·ч)

Коэффициент воздухопроницаемости

кг/[м·ч·(Па)]

Показатель режима фильтрации

Сопротивление воздухопроницанию

[м·ч·(Па)]/кг

Перепад давления

Расход воздуха

Толщина образца

Плотность воздуха

4 Общие положения

4.1 Сущность метода заключается в измерении количества воздуха (плотности потока воздуха) , проходящего через образец материала с известными геометрическими размерами, при последовательном создании заданных стационарных перепадов давления воздуха. По результатам измерений вычисляют коэффициент воздухопроницаемости материала и сопротивление воздухопроницанию образца материала , входящие в уравнения фильтрации воздуха (1) и (2) соответственно:

где - плотность потока воздуха, кг/(м·ч);

- перепад давления, Па;

- толщина образца, м;

- сопротивление воздухопроницанию, [м·ч·(Па)]/кг.

4.2 Число образцов, необходимое для определения воздухопроницаемости и сопротивления воздухопроницанию, должно быть не менее пяти.

4.3 Температура и относительная влажность воздуха в помещении, в котором проводят испытания, должны быть (20±3) °С и (50±10)% соответственно.

5 Средства испытания

5.1 Испытательная установка, включающая в себя:

- герметичную камеру с регулируемым проемом и приспособлениями для герметичного крепления образца;

- оборудование для создания, поддержания и быстрого изменения давления воздуха в герметичной камере до 100 Па при испытаниях теплоизоляционных материалов и до 10000 Па - при испытаниях конструкционно-теплоизоляционных материалов (компрессор, воздушный насос, регуляторы давления, регуляторы перепада давления, регуляторы расхода воздуха, запорная арматура).

5.2 Средства измерения:

- расходомеры (ротаметры) воздуха с пределом измерения расхода воздуха от 0 до 40 м/ч с погрешностью измерения ±5% верхнего предела измерения;

- показывающие или самопишущие манометры, датчики давления, обеспечивающие проведение измерений с точностью ±5%, но не более 2 Па;

- термометр для измерения температуры воздуха в пределах 10 °С - 30 °С с погрешностью измерения ±0,5 °С;

- психрометр для измерения относительной влажности воздуха в пределах 30%-90% с погрешностью измерения ±10%;

- линейка металлическая по ГОСТ 427 с погрешностью измерения ±0,5 мм;

- штангенциркуль по ГОСТ 166 .

5.3 Сушильный шкаф.

5.4 Испытательное оборудование и средства измерений должны соответствовать требованиям действующих нормативных документов и быть поверены в установленном порядке.

5.5 Схема испытательной установки для определения воздухопроницаемости приведена на рисунке 1.

1 - компрессор (воздушный насос); 2 - регулирующая запорная арматура; 3 - шланги; 4 - расходомеры (ротаметры) воздуха; 5 - герметичная камера, обеспечивающая стационарный режим движения воздуха; 6 - приспособление для герметичного крепления образца; 7 - образец; 8 - показывающие или самопишущие манометры, датчики давления

Рисунок 1 - Схема испытательной установки для определения воздухопроницаемости теплоизоляционных материалов

5.6 Испытательная установка должна обеспечивать герметичность в диапазоне режимов испытаний с учетом технических возможностей испытательного оборудования.

При проверке герметичности камеры в проем устанавливают и тщательно герметизируют воздухонепроницаемый элемент (например, металлическую пластину). Потери давления воздуха на любых стадиях испытания не должны превышать 2%.

6 Подготовка к испытанию

6.1 Перед проведением испытания составляют программу испытаний, в которой должны быть указаны значения конечного контрольного давления и приведен график перепадов давления.

6.2 Образцы для испытания изготовляют или отбирают из изделий полной заводской готовности в виде прямоугольных параллелепипедов, наибольшие (лицевые) грани которых соответствуют размерам приспособления для крепления образца, но не менее 200x200 мм.

6.3 Образцы принимают на испытание согласно акту отбора образцов, оформленному в установленном порядке.

6.4 В случае если отбор или изготовление образцов проводят без привлечения испытательного центра (лаборатории), то при оформлении результатов испытаний в отчете (протоколе) испытания делают соответствующую запись.

6.5 Измеряют толщину образцов линейкой с точностью до ±0,5 мм в четырех углах на расстоянии (30±5) мм от вершины угла и посередине каждой стороны.

При толщине изделия менее 10 мм толщину образца измеряют штангенциркулем или микрометром.

За толщину образца принимают среднеарифметическое значение результатов всех измерений.

6.6 Вычисляют разнотолщинность образцов как разность между наибольшим и наименьшим значениями толщины, полученными при измерении образца в соответствии с 6.5. При толщине образца более 10 мм разнотолщинность не должна превышать 1 мм, при толщине образца 10 мм и менее разнотолщинность не должна превышать 5% толщины образца.

6.7 Образцы высушивают до постоянной массы при температуре, указанной в нормативном документе на материал или изделие. Образцы считают высушенными до постоянной массы, если потеря их массы после очередного высушивания в течение 0,5 ч не превышает 0,1%. По окончании сушки определяют плотность каждого образца в сухом состоянии. Образец немедленно помещают его* в испытательную установку для определения воздухопроницаемости. Допускается до проведения испытаний хранить высушенные образцы в изолированном от окружающей воздушной среды объеме не более 48 ч при температуре (20±3) °С и относительной влажности воздуха (50±10)%.
_________________
* Текст документа соответствует оригиналу. - Примечание изготовителя базы данных.

При необходимости допускается испытывать влажные образцы с указанием в отчете значения влажности образцов до и после испытаний.

7 Проведение испытания

7.1 Испытуемый образец устанавливают в приспособление для герметичного крепления образца так, чтобы его лицевые поверхности были обращены внутрь камеры и в помещение. Образец тщательно герметизируют и фиксируют так, чтобы исключить его деформацию, зазоры между торцами камеры и образцом, а также проникновение воздуха через неплотности между прижимной рамкой, образцом и камерой. При необходимости проводят герметизацию торцевых граней образца в целях исключения проникновения через них воздуха из камеры в помещение, добиваясь полного прохождения воздуха в процессе испытания только через лицевые поверхности образца.

7.2 Концы шлангов манометра (датчиков давления) располагают на одном уровне по горизонтали по обе стороны испытуемого образца в камере и помещении.

7.3 При помощи компрессора (воздушного насоса) и регулирующей арматуры последовательно (ступенчато) создают заданные в программе испытаний разности давлений по обе стороны образца. Поток воздуха через образец считают установившимся (стационарным), если значения показаний манометра и расходомеров отличаются не более чем на 2% в течение 60 с при объеме камеры до 0,25 м включительно, 90 с - при объеме 0,5 м, 120 с - при объеме 0,75 м и т.д.

7.4 Для каждого значения перепада давлений , Па, по расходомеру (ротаметру) фиксируют значение расхода воздуха , м/ч.

7.5 Число ступеней и значения перепада давления, соответствующие каждой ступени испытания, задают в программе испытаний. Число ступеней испытания должно быть не менее трех.

Рекомендуются следующие значения перепада давления по ступеням при испытании по определению коэффициента воздухопроницаемости: 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100 Па. При определении сопротивления воздухопроницанию рекомендуются те же значения перепада давления вплоть до предельных значений испытательного оборудования, но не более 1000 Па.

7.6 После достижения заданного программой испытаний значения конечного давления нагрузку последовательно уменьшают, используя те же ступени давления, но в обратном порядке, измеряя расход воздуха на каждой ступени перепада давления.

8 Обработка результатов испытания

8.1 За результат испытания при каждом перепаде давлений принимают наибольшее значение расхода воздуха для каждой ступени независимо от того, было оно достигнуто при нарастании или при снижении давления.

8.2 По принятым значениям для каждой ступени давления вычисляют значение расхода воздуха (плотность потока воздуха), проходящего через образец, , кг/(м·ч), по формуле

где - плотность воздуха, кг/м;

- площадь лицевой поверхности образца, м.

8.3 Для определения характеристик воздухопроницаемости материала по полученным результатам испытания уравнение (1) представляют в виде:

По значениям и в логарифмических координатах строят график воздухопроницаемости образца.

Логарифмы значений наносят на плоскость координат в зависимости от логарифмов соответствующих перепадов давлений . Через нанесенные точки проводят прямую линию. Значение показателя режима фильтрации определяют как тангенс угла наклона прямой к оси абсцисс.

8.4 Коэффициент воздухопроницаемости материала , кг/[м·ч·(Па)], определяют по формуле

где - ордината пересечения прямой с осью ;

- толщина испытуемого образца, м.

Сопротивление воздухопроницанию образца материала , [м·ч·(Па)]/кг, определяют по формуле

8.5 Значение коэффициента воздухопроницаемости материала и сопротивления воздухопроницанию образцов материала определяют как среднеарифметическое значение результатов испытания всех образцов.

8.6 Пример обработки результатов испытания приведен в приложении А.

Приложение А (справочное). Пример обработки результатов испытания

Приложение А
(справочное)

В настоящем приложении приведен пример обработки результатов испытания по определению коэффициента воздухопроницаемости каменной ваты плотностью 90 кг/м и сопротивления воздухопроницанию образца каменной ваты размерами 200x200x50 мм.

Площадь лицевой поверхности образца - 0,04 м.

Плотность воздуха при температуре 20 °С - 1,21 кг/м.

Результаты измерений и обработки результатов приведены в таблице А.1. В первом столбце представлены измеренные значения перепада давления воздуха по разные стороны образца, во втором столбце - измеренные значения расхода воздуха через образец, в третьем столбце - значения плотности потока воздуха через образец, рассчитанные по формуле (3) по данным столбца 2. В четвертом и пятом столбцах представлены значения натуральных логарифмов значений и , приведенных в столбцах 1 и 3 соответственно.


Таблица А.1

Строительные материалы в основной своей массе являются пористыми телами. Размеры и структура пор у различных материалов неодинакова, поэтому воздухопроницаемость материалов в зависимости от разности давлений проявляется по-разному.

На рис.11 показана качественная картина зависимости воздухопроницаемости G от разности давлений ΔР для строительных материалов, приведенная К.Ф. Фокиным .

Рис.11. Влияние пористости материала на его воздухопроницаемость.1 - материалы с равномерной пористостью (типа пенобетона); 2 - материалы с порами различных размеров (типа засыпок); 3 - маловоздухопроницаемые материалы (типа древесины, цементных растворов), 4 - влажные материалы.

Прямолинейный участок от 0 до точки а на кривой 1 свидетельствует о ламинарном движении воздуха по порам материала с равномерной пористостью при малых значениях разности давлений. Выше этой точки на криволинейном участке происходит турбулентное движение. В материалах с разными размерами пор движение воздуха турбулентно даже при малой разности давлений, что видно из кривизны линии 2. В маловоздухороницаемых материалах, напротив, движение воздуха по порам ламинарно и при довольно больших разностях давлений, поэтому зависимость G от ΔР линейна при любой разности давлений (линия 3). Во влажных материалах (кривая 4) при малых ΔР , меньших определенной минимальной разности давлений ΔР мин , воздухопроницаемость отсутствует, и лишь при превышении этой величины, когда разность давлений окажется достаточной для преодоления сил поверхностного натяжения воды, содержащейся в порах материала, возникает движение воздуха. Чем выше влажность материала, тем больше величина ΔР мин .

При ламинарном движении воздуха в порах материала справедлива зависимость

где G - воздухопроницаемость ограждения или слоя материала, кг/ (м 2. ч);

i - коэффициент воздухопроницаемости материала, кг/ (м. Па. ч);

δ - толщина слоя материала, м.

Коэффициент воздухопроницаемости материала аналогичен коэффициенту теплопроводности и показывает степень воздухопроницаемости материала, численно равную потоку воздуха в кг, проходящему сквозь 1 м 2 площади, перпендикулярной направлению потока, при градиенте давления, равном 1 Па/м.

Величины коэффициента воздухопроницаемости для различных строительных материалов отличаются друг от друга значительно.

Например, для минеральной ваты i ≈ 0,044 кг/ (м. Па. ч), для неавтоклавного пенобетона i ≈ 5,3.10 - 4 кг/ (м. Па. ч), для сплошного бетона i ≈ 5,1.10 - 6 кг/ (м. Па. ч),

При турбулентном движении воздуха в формуле (2.60) следует заменить ΔР на ΔР n . При этом показатель степени n изменяется в пределах 0,5 - 1. Однако на практике формула (2.60) применяется и для турбулентного режима течения воздуха в порах материала.



В современной нормативной литературе не применяется понятия коэффициент воздухопроницаемости. Материалы и конструкции характеризуются сопротивлением воздухопроницанию R и, кг/ (м. ч). при разности давлений по разные стороны ∆Р о =10 Па, которое при ламинарном движении воздуха находится по формуле:

где G - воздухопроницаемость слоя материала или конструкции, кг/ (м 2. ч).

Сопротивление воздухопроницанию ограждений в своей размерности не содержит размерности потенциала переноса воздуха - давления. Такое положение возникло из-за того, что в нормативных документах делением фактической разности давлений ∆P на нормативное значение давлений ∆P o =10 Па, сопротивление воздухопроницанию приводится к разности давлений ∆P o = 10 Па.

В приведены значения сопротивления воздухопроницанию для слоев некоторых материалов и конструкций.

Для окон, в неплотностях которых движение воздуха происходит при смешанном режиме, сопротивление воздухопроницанию, кг/ (м. ч), определяется из выражения:

Вопросы для самоконтроля

1. Что такое воздухопроницаемость материала и ограждения?

2. Что такое воздухопроницание?

3. Что такое инфильтрация?

4. Что такое эксфильтрация?

5. Какая количественная характеристика процесса воздухопроницания названа воздухопроницаемостью?

6. Через какие два типа неплотностей осуществляется фильтрация воздуха в ограждениях?

7. Какие три вида фильтрации существует, по терминологии Р.Е. Брилинга?

8. Что является потенциалом воздухопроницания?

9. Какие две природы формируют разность давлений на противоположных сторонах ограждения?

10. Что такое коэффициент воздухопроницаемости материала?

11. Что такое сопротивление воздухопроницанию ограждающей конструкции?

12. Напишите формулу для определения сопротивления воздухопроницанию при ламинарном движении воздуха через поры материалов конструкции.

13. Напишите формулу для определения сопротивления воздухопроницанию окна.

Существует легенда о «дышащей стене», и сказания о «здоровом дыхании шлакоблока, которое создает неповторимую атмосферу в доме». На самом деле паропроницаемость стены не большая, количество пара проходящего через нее незначительно, и гораздо меньше, чем количество пара переносимое воздухом, при его обмене в помещении.

Паропроницаемость — один из важнейших параметров, используемых при расчете утепления. Можно сказать, что паропроницаемость материалов определяет всю конструкцию утепления.

Что такое паропроницаемость

Движение пара через стену происходит при разности парциального давления по сторонам стены (различная влажность). При этом разности атмосферного давления может и не быть.

Паропроницаемость — способность материла пропускать через себя пар. По отечественной классификации определяется коэффициентом паропроницаемости m, мг/(м*час*Па).

Сопротивляемость слоя материала будет зависеть от его толщины.
Определяется путем деления толщины на коэффициент паропроницаемости. Измеряется в (м кв.*час*Па)/мг.

Например, коэффициент паропроницаемости кирпичной кладки принят как 0,11 мг/(м*час*Па). При толщине кирпичной стены равной 0,36 м, ее сопротивление движению пара составит 0,36/0,11=3,3 (м кв.*час*Па)/мг.

Какая паропроницаемость у строительных материалов

Ниже приведены значения коэффициента паропроницаемости для нескольких строительных материалов (согласно нормативного документа), которые наиболее широко используются, мг/(м*час*Па).
Битум 0,008
Тяжелый бетон 0,03
Автоклавный газобетон 0,12
Керамзитобетон 0,075 — 0,09
Шлакобетон 0,075 — 0,14
Обожженная глина (кирпич) 0,11 — 0,15 (в виде кладки на цементном растворе)
Известковый раствор 0,12
Гипсокартон, гипс 0,075
Цементно-песчаная штукатурка 0,09
Известняк (в зависимости от плотности) 0,06 — 0,11
Металлы 0
ДСП 0,12 0,24
Линолеум 0,002
Пенопласт 0,05-0,23
Полиурентан твердый, полиуретановая пена
0,05
Минеральная вата 0,3-0,6
Пеностекло 0,02 -0,03
Вермикулит 0,23 — 0,3
Керамзит 0,21-0,26
Дерево поперек волокон 0,06
Дерево вдоль волокон 0,32
Кирпичная кладка из силикатного кирпича на цементном растворе 0,11

Данные по паропроницанию слоев обязательно нужно учитывать при проектировании любого утепления.

Как конструировать утепление — по пароизоляционным качествам

Основное правило утепления — паропрозрачность слоев должна увеличиваться по направлению наружу. Тогда в холодное время года, с большей вероятностью, не произойдет накопление воды в слоях, когда конденсация будет происходить в точке росы.

Базовый принцип помогает определиться в любых случаях. Даже когда все «перевернуто вверх ногами» – утепляют изнутри, несмотря на настойчивые рекомендации делать утепление только снаружи.

Чтобы не произошло катастрофы с намоканием стен, достаточно вспомнить о том, что внутренний слой должен наиболее упорно сопротивляться пару, и исходя из этого для внутреннего утепления применить экструдированный пенополистирол толстым слоем — материал с очень низкой паропроницаемостью.

Или же не забыть для очень «дышащего» газобетона снаружи применить еще более «воздушную» минеральную вату.

Разделение слоев пароизолятором

Другой вариант применения принципа паропрозрачности материалов в многослойной конструкции — разделение наиболее значимых слоев пароизолятором. Или применение значимого слоя, который является абсолютным пароизолятором.

Например, — утепление кирпичной стены пеностеклом. Казалось бы, это противоречит вышеуказанному принципу, ведь возможно накопление влаги в кирпиче?

Но этого не происходит, из-за того, что полностью прерывается направленное движение пара (при минусовых температурах из помещения наружу). Ведь пеностекло полный пароизолятор или близко к этому.

Поэтому, в данном случае кирпич войдет в равновесное состояние с внутренней атмосферой дома, и будет служить аккумулятором влажности при резких ее скачках внутри помещения, делая внутренний климат приятнее.

Принципом разделении слоев пользуются и применяя минеральную вату — утеплитель особо опасный по влагонакоплению. Например, в трехслойной конструкции, когда минеральная вата находится внутри стены без вентиляции, рекомендуется под вату положить паробарьер, и оставить ее, таким образом, в наружной атмосфере.

Международная классификация пароизоляционных качеств материалов

Международная классификация материалов по пароизоляционным свойствам отличается от отечественной.

Согласно международному стандарту ISO/FDIS 10456:2007(E) материалы характеризуются коэффициентом сопротивляемости движению пара. Этот коэффициент указывает во сколько раз больше материал сопротивляется движению пара по сравнению с воздухом. Т.е. у воздуха коэффициент сопротивляемости движению пара равен 1, а у экструдированного пенополистирола уже 150, т.е. пенополистирол в 150 раз пропускает пар хуже чем воздух.

Также в международных стандартах принято определять паропроницаемость для сухих и увлажненных материалов. Границей между понятиями «сухой» и «увлажненный» выбрана внутренняя влажность материала в 70%.
Ниже приведены значения коэффициента сопротивляемости движению пара для различных материалов согласно международным стандартам.

Коэффициент сопротивляемости движению пара

Сначала приведены данные для сухого материала, а через запятую для увлажненного (более 70% влажности).
Воздух 1, 1
Битум 50 000, 50 000
Пластики, резина, силикон — >5 000, >5 000
Тяжелый бетон 130, 80
Бетон средней плотности 100, 60
Полистирол бетон 120, 60
Автоклавный газобетон 10, 6
Легкий бетон 15, 10
Искусственный камень 150, 120
Керамзитобетон 6-8, 4
Шлакобетон 30, 20
Обожженная глина (кирпич) 16, 10
Известковый раствор 20, 10
Гипсокартон, гипс 10, 4
Гипсовая штукатурка 10, 6
Цементно-песчаная штукатурка 10, 6
Глина, песок, гравий 50, 50
Песчаник 40, 30
Известняк (в зависимости от плотности) 30-250, 20-200
Керамическая плитка?, ?
Металлы?, ?
OSB-2 (DIN 52612) 50, 30
OSB-3 (DIN 52612) 107, 64
OSB-4 (DIN 52612) 300, 135
ДСП 50, 10-20
Линолеум 1000, 800
Подложка под ламинат пластик 10 000, 10 000
Подложка под ламинат пробка 20, 10
Пенопласт 60, 60
ЭППС 150, 150
Полиурентан твердый, полиуретановая пена 50, 50
Минеральная вата 1, 1
Пеностекло?, ?
Перлитовые панели 5, 5
Перлит 2, 2
Вермикулит 3, 2
Эковата 2, 2
Керамзит 2, 2
Дерево поперек волокон 50-200, 20-50

Нужно заметить, что данные по сопротивляемости движению пара у нас и «там» весьма различаются. Например, пеностекло у нас нормируется, а международный стандарт говорит, что оно является абсолютным пароизолятором.

Откуда возникла легенда о дышащей стене

Очень много компаний выпускает минеральную вату. Это самый паропроницаемый утеплитель. По международным стандартам ее коэффициент сопротивления паропроницаемости (не путать с отечественным коэффициентом паропроницаемости) равен 1,0. Т.е. фактически минеральная вата не отличается в этом отношении от воздуха.

Действительно, это «дышащий» утеплитель. Что бы продать минеральной ваты как можно больше, нужна красивая сказка. Например, о том, что если утеплить кирпичную стену снаружи минеральной ватой, то она ничего не потеряет в плане паропроницания. И это абсолютная правда!

Коварная ложь скрывается в том, что через кирпичные стены толщиной в 36 сантиметров, при разности влажностей в 20% (на улице 50%, в доме — 70%) за сутки из дома выйдет примерно около литра воды. В то время как с обменом воздуха, должно выйти примерно в 10 раз больше, что бы влажность в доме не наращивалась.

А если стена снаружи или изнутри будет изолирована, например слоем краски, виниловыми обоями, плотной цементной штукатуркой, (что в общем-то «самое обычное дело»), то паропроницаемость стены уменьшиться в разы, а при полной изоляции — в десятки и сотни раз.

Поэтому всегда кирпичной стене и домочадцам будет абсолютно одинаково, — накрыт ли дом минеральной ватой с «бушующим дыханием», или же «уныло-сопящим» пенопластом.

Принимая решения по утеплению домов и квартир, стоит исходить из основного принципа — наружный слой должен быть более паропроницаем, желательно в разы.

Если же это выдерживать почему-либо не возможно, то можно разделить слои сплошной пароизоляцией, (применить полностью паронепроницаемый слой) и прекратить движение пара в конструкции, что приведет к состоянию динамического равновесия слоев со средой в которой они будут находиться.

В отечественных нормах сопротивление паропроницаемости (сопротивление паропроницанию Rп, м2. ч. Па/мг ) нормируется в главе 6 "Сопротивление паропроницанию ограждающих конструкций" СНиП II-3-79 (1998) "Строительная теплотехника".

Международные стандарты паропроницаемости строительных материалов приводятся в стандартах ISO TC 163/SC 2 и ISO/FDIS 10456:2007(E) - 2007 год.

Показатели коэффициента сопротивления паропроницанию определяются на основании международного стандарта ISO 12572 "Теплотехнические свойства строительных материалов и изделий - Определение паропроницаемости". Показатели паропроницаемости для международных норм ISO определялись лабораторным способом на выдержанных во времени (не только что выпущенных) образцах строительных материалов. Паропроницаемость определялась для строительных материалов в сухом и влажном состоянии.
В отечественном СНиП приводятся лишь расчетные данные паропроницаемости при массовом отношении влаги в материале w, %, равном нулю.
Поэтому для выбора строительных материалов по паропроницаемости при дачном строительстве лучше ориентироваться на международные стандарты ISO , котрые определяют паропроницаемость "сухих" строительных материалов при влажности менее 70% и "влажных" строительных материалов при влажности более 70%. Помните, что при оставлении "пирогов" паропроницаемых стен, паропроницаемость материалов изнутри-кнаружи не должна уменьшаться, иначе постепенно произойдет "замокание" внутренних слоев строительных материалов и значительно увеличится их теплопроводность.

Паропроницаемость материалов изнутри кнаружи отапливаемого дома должна уменьшаться: СП 23-101-2004 Проектирование тепловой защиты зданий, п.8.8: Для обеспечения лучших эксплуатационных характеристик в многослойных конструкциях зданий с теплой стороны следует располагать слои большей теплопроводности и с большим сопротивлением паропроницанию, чем наружные слои. По данным Т.Роджерс (Роджерс Т.С. Проектирование тепловой защиты зданий. / Пер. с англ. - м.: си, 1966) Отдельные слои в многослойных ограждениях следует располагать в такой последовательности, чтобы паропроницаемость каждого слоя нарастала от внутренней поверхности к наружной. При таком расположении слоев водяной пар, попавший в ограждение через внутреннюю поверхность с возрастающей легкостью, будет проходить через все спои ограждения и удаляться из ограждения с наружной поверхности. Ограждающая конструкция будет нормально функционировать, если при соблюдении сформулированного принципа, паропроницаемость наружного слоя, как минимум, в 5 раз будет превышать паропроницаемость внутреннего слоя.

Механизм паропроницаемости строительных материалов:

При низкой относительной влажности влага из атмосферы в виде отдельных молекул водяного пара. При повышении относительной влажности поры строительных материалов начинают заполняться жидкостью и начинают работать механизмы смачивания и капиллярного подсоса. При повышении влажности строительного материала его паропроницаемость увеличивается (снижается коэффициент сопротивления паропроницаемости).

Показатели паропроницаемости "сухих" строительных материалов по ISO/FDIS 10456:2007(E) применимы для внутренних конструкций отапливаемых зданий. Показатели паропроницаемости "влажных" строительных материалов применимы для всех наружных конструкций и внутрених конструкций неотапливаемых зданий или дачных домов с переменным (временным) режимом отопления.

Таблица паропроницаемости - это полная сводная таблица с данными по паропроницаемости всех возможных материалов, используемых в строительстве. Само слово «паропроницаемость» означает способность слоев строительного материала либо пропускать, либо задерживать водяные пары из-за разных значений давления на обе стороны материала при одинаковом показателе атмосферного давления. Эта способность так же называется коэффициентом сопротивляемости и определяется специальными величинами.

Чем выше показатель паропроницаемости, тем больше стена может вместить в себя влаги, а это значит, что у материала низкая морозостойкость.

Таблица паропроницаемости указывается на следующие показатели:

  1. Тепловая проводимость - это, своего рода, показатель энергетического переноса тепла от более нагретых частиц к менее нагретым частицам. Следовательно, устанавливается равновесие в температурных режимах. Если в квартире установлена высокая теплопроводность, то это является максимально комфортными условиями.
  2. Тепловая емкость. С помощью нее можно рассчитать количество подаваемого тепла и содержащегося тепла в помещении. Обязательно необходимо подводить его к вещественному объему. Благодаря этому можно зафиксировать температурное изменение.
  3. Тепловое усвоение - это ограждающее конструкционное выравнивание при температурных колебаниях. Иными словами, тепловое усвоение - это степень поглощения поверхностями стен влаги.
  4. Тепловая устойчивость - это способность оградить конструкции от резких колебаний тепловых потоков.

Полностью весь комфорт в помещении будет зависеть от этих тепловых условий, именно поэтому при строительстве так необходима таблица паропроницаемости , так как она помогает эффективно сравнить разнообразные типы паропроницаемости.

С одной стороны, паропроницаемость хорошо влияет на микроклимат, а с другой - разрушает материалы, из которых построен дома. В таких случаях рекомендуется устанавливать слой пароизоляции с внешней стороны дома. После этого утеплитель не будет пропускать пар.

Пароизоляция - это материалы, которые применяют от негативного воздействия воздушных паров с целью защиты утеплителя.

Существует три класса пароизоляции. Они различаются по механической прочности и сопротивлению паропроницаемости. Первый класс пароизоляции - это жесткие материалы, в основе которых фольга. Ко второму классу относятся материалы на основе полипропилена или полиэтилена. И третий класс составляют мягкие материалы.

Таблица паропроницаемости материалов.

Таблица паропроницаемости материалов - это строительные нормативы международных и отечественных стандартов паропроницаемости строительных материалов.

Таблица паропроницаемости материалов.

Материал

Коэффициент паропроницаемости, мг/(м*ч*Па)

Алюминий

Арболит, 300 кг/м3

Арболит, 600 кг/м3

Арболит, 800 кг/м3

Асфальтобетон

Вспененный синтетический каучук

Гипсокартон

Гранит, гнейс, базальт

ДСП и ДВП, 1000-800 кг/м3

ДСП и ДВП, 200 кг/м3

ДСП и ДВП, 400 кг/м3

ДСП и ДВП, 600 кг/м3

Дуб вдоль волокон

Дуб поперек волокон

Железобетон

Известняк, 1400 кг/м3

Известняк, 1600 кг/м3

Известняк, 1800 кг/м3

Известняк, 2000 кг/м3

Керамзит (насыпной, т.е. гравий), 200 кг/м3

0,26; 0,27 (СП)

Керамзит (насыпной, т.е. гравий), 250 кг/м3

Керамзит (насыпной, т.е. гравий), 300 кг/м3

Керамзит (насыпной, т.е. гравий), 350 кг/м3

Керамзит (насыпной, т.е. гравий), 400 кг/м3

Керамзит (насыпной, т.е. гравий), 450 кг/м3

Керамзит (насыпной, т.е. гравий), 500 кг/м3

Керамзит (насыпной, т.е. гравий), 600 кг/м3

Керамзит (насыпной, т.е. гравий), 800 кг/м3

Керамзитобетон, плотность 1000 кг/м3

Керамзитобетон, плотность 1800 кг/м3

Керамзитобетон, плотность 500 кг/м3

Керамзитобетон, плотность 800 кг/м3

Керамогранит

Кирпич глиняный, кладка

Кирпич керамический пустотелый (1000 кг/м3 брутто)

Кирпич керамический пустотелый (1400 кг/м3 брутто)

Кирпич, силикатный, кладка

Крупноформатный керамический блок (тёплая керамика)

Линолеум (ПВХ, т.е. ненатуральный)

Минвата, каменная, 140-175 кг/м3

Минвата, каменная, 180 кг/м3

Минвата, каменная, 25-50 кг/м3

Минвата, каменная, 40-60 кг/м3

Минвата, стеклянная, 17-15 кг/м3

Минвата, стеклянная, 20 кг/м3

Минвата, стеклянная, 35-30 кг/м3

Минвата, стеклянная, 60-45 кг/м3

Минвата, стеклянная, 85-75 кг/м3

ОСП (OSB-3, OSB-4)

Пенобетон и газобетон, плотность 1000 кг/м3

Пенобетон и газобетон, плотность 400 кг/м3

Пенобетон и газобетон, плотность 600 кг/м3

Пенобетон и газобетон, плотность 800 кг/м3

Пенополистирол (пенопласт), плита, плотность от 10 до 38 кг/м3

Пенополистирол экструдированный (ЭППС, XPS)

0,005 (СП); 0,013; 0,004

Пенополистирол, плита

Пенополиуретан, плотность 32 кг/м3

Пенополиуретан, плотность 40 кг/м3

Пенополиуретан, плотность 60 кг/м3

Пенополиуретан, плотность 80 кг/м3

Пеностекло блочное

0 (редко 0,02)

Пеностекло насыпное, плотность 200 кг/м3

Пеностекло насыпное, плотность 400 кг/м3

Плитка (кафель) керамическая глазурованная

Плитка клинкерная

низкая; 0,018

Плиты из гипса (гипсоплиты), 1100 кг/м3

Плиты из гипса (гипсоплиты), 1350 кг/м3

Плиты фибролитовые и арболит, 400 кг/м3

Плиты фибролитовые и арболит, 500-450 кг/м3

Полимочевина

Полиуретановая мастика

Полиэтилен

Раствор известково-песчаный с известью (или штукатурка)

Раствор цементно-песчано-известковый (или штукатурка)

Раствор цементно-песчаный (или штукатурка)

Рубероид, пергамин

Сосна, ель вдоль волокон

Сосна, ель поперек волокон

Фанера клееная

Эковата целлюлозная

Публикации по теме