Suma progresiei aritmetice n. Progresie algebrică

Dacă fiecare număr natural n potrivește un număr real un n , atunci ei spun că dat succesiune de numere :

A 1 , A 2 , A 3 , . . . , un n , . . . .

Deci, o secvență numerică este o funcție a unui argument natural.

Număr A 1 numit primul membru al secvenței , număr A 2 al doilea membru al secvenței , număr A 3 al treilea si asa mai departe. Număr un n numit al-lea membru secvente , și numărul natural nnumărul lui .

De la doi membri vecini un n și un n +1 secvențe de membri un n +1 numit ulterior (către un n ), A un n anterior (către un n +1 ).

Pentru a specifica o secvență, trebuie să specificați o metodă care vă permite să găsiți un membru al secvenței cu orice număr.

Adesea secvența este dată cu formule al n-lea termen , adică o formulă care vă permite să determinați un membru al secvenței după numărul său.

De exemplu,

succesiunea numerelor impare pozitive poate fi dată prin formula

un n= 2n- 1,

iar succesiunea alternării 1 și -1 - formulă

b n = (-1)n +1 .

Secvența poate fi determinată formulă recurentă, adică o formulă care exprimă orice membru al secvenței, începând cu unii, prin membrii anteriori (unul sau mai mulți).

De exemplu,

dacă A 1 = 1 , A un n +1 = un n + 5

A 1 = 1,

A 2 = A 1 + 5 = 1 + 5 = 6,

A 3 = A 2 + 5 = 6 + 5 = 11,

A 4 = A 3 + 5 = 11 + 5 = 16,

A 5 = A 4 + 5 = 16 + 5 = 21.

În cazul în care un a 1= 1, a 2 = 1, un n +2 = un n + un n +1 , atunci primii șapte membri ai secvenței numerice sunt setate după cum urmează:

a 1 = 1,

a 2 = 1,

a 3 = a 1 + a 2 = 1 + 1 = 2,

a 4 = a 2 + a 3 = 1 + 2 = 3,

un 5 = a 3 + a 4 = 2 + 3 = 5,

A 6 = A 4 + A 5 = 3 + 5 = 8,

A 7 = A 5 + A 6 = 5 + 8 = 13.

Secvențele pot fi final și fără sfârşit .

Secvența este numită final dacă are un număr finit de membri. Secvența este numită fără sfârşit dacă are infinit de membri.

De exemplu,

succesiune de două cifre numere naturale:

10, 11, 12, 13, . . . , 98, 99

final.

Succesiunea numerelor prime:

2, 3, 5, 7, 11, 13, . . .

fără sfârşit.

Secvența este numită crescând , dacă fiecare dintre membrii săi, începând cu al doilea, este mai mare decât precedentul.

Secvența este numită în scădere , dacă fiecare dintre membrii săi, începând cu al doilea, este mai mic decât precedentul.

De exemplu,

2, 4, 6, 8, . . . , 2n, . . . este o secvență ascendentă;

1, 1 / 2 , 1 / 3 , 1 / 4 , . . . , 1 /n, . . . este o secvență descendentă.

Se numește o succesiune ale cărei elemente nu descresc odată cu creșterea numărului sau, dimpotrivă, nu cresc succesiune monotonă .

Secvențele monotone, în special, sunt secvențe crescătoare și secvențe descrescătoare.

Progresie aritmetică

Progresie aritmetică se numește o secvență, fiecare membru al căruia, începând cu al doilea, este egal cu precedentul, la care se adaugă același număr.

A 1 , A 2 , A 3 , . . . , un n, . . .

este o progresie aritmetică dacă pentru orice număr natural n condiția este îndeplinită:

un n +1 = un n + d,

Unde d - un număr.

Astfel, diferența dintre membrii următori și anteriori unui dat progresie aritmetică mereu constant:

a 2 - A 1 = a 3 - A 2 = . . . = un n +1 - un n = d.

Număr d numit diferența unei progresii aritmetice.

Pentru a seta o progresie aritmetică, este suficient să specificați primul său termen și diferența.

De exemplu,

dacă A 1 = 3, d = 4 , atunci primii cinci termeni ai secvenței se găsesc după cum urmează:

a 1 =3,

a 2 = a 1 + d = 3 + 4 = 7,

a 3 = a 2 + d= 7 + 4 = 11,

a 4 = a 3 + d= 11 + 4 = 15,

A 5 = A 4 + d= 15 + 4 = 19.

Pentru o progresie aritmetică cu primul termen A 1 si diferenta d a ei n

un n = a 1 + (n- 1)d.

De exemplu,

găsiți al treizecilea termen al unei progresii aritmetice

1, 4, 7, 10, . . .

a 1 =1, d = 3,

un 30 = a 1 + (30 - 1)d= 1 + 29· 3 = 88.

un n-1 = a 1 + (n- 2)d,

un n= a 1 + (n- 1)d,

un n +1 = A 1 + nd,

atunci evident

un n=
a n-1 + a n+1
2

fiecare membru al progresiei aritmetice, incepand de la al doilea, este egal cu media aritmetica a membrilor anteriori si urmatori.

numerele a, b și c sunt membri consecutivi ai unei progresii aritmetice dacă și numai dacă unul dintre ele este egal cu media aritmetică a celorlalte două.

De exemplu,

un n = 2n- 7 , este o progresie aritmetică.

Să folosim afirmația de mai sus. Avem:

un n = 2n- 7,

un n-1 = 2(n- 1) - 7 = 2n- 9,

un n+1 = 2(n+ 1) - 7 = 2n- 5.

Prin urmare,

a n+1 + a n-1
=
2n- 5 + 2n- 9
= 2n- 7 = un n,
2
2

Rețineți că n -al-lea membru al unei progresii aritmetice poate fi găsit nu numai prin A 1 , dar și orice anterioară un k

un n = un k + (n- k)d.

De exemplu,

pentru A 5 poate fi scris

un 5 = a 1 + 4d,

un 5 = a 2 + 3d,

un 5 = a 3 + 2d,

un 5 = a 4 + d.

un n = un n-k + kd,

un n = un n+k - kd,

atunci evident

un n=
A n-k +a n+k
2

orice membru al unei progresii aritmetice, începând de la al doilea, este egal cu jumătate din suma membrilor acestei progresii aritmetice distanțate egal de acesta.

În plus, pentru orice progresie aritmetică, egalitatea este adevărată:

a m + a n = a k + a l,

m + n = k + l.

De exemplu,

în progresie aritmetică

1) A 10 = 28 = (25 + 31)/2 = (A 9 + A 11 )/2;

2) 28 = un 10 = a 3 + 7d= 7 + 7 3 = 7 + 21 = 28;

3) un 10= 28 = (19 + 37)/2 = (a 7 + a 13)/2;

4) a 2 + a 12 = a 5 + a 9, deoarece

a 2 + a 12= 4 + 34 = 38,

a 5 + a 9 = 13 + 25 = 38.

S n= a 1 + a 2 + a 3 + . . .+ un n,

primul n membrii unei progresii aritmetice este egal cu produsul dintre jumătate din suma termenilor extremi cu numărul de termeni:

Din aceasta, în special, rezultă că dacă este necesar să se însumeze termenii

un k, un k +1 , . . . , un n,

atunci formula anterioară își păstrează structura:

De exemplu,

în progresie aritmetică 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S 10 = 1 + 4 + . . . + 28 = (1 + 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S 10 - S 3 = (10 + 28 ) · (10 - 4 + 1)/2 = 133.

Dacă este dată o progresie aritmetică, atunci cantitățile A 1 , un n, d, nșiS n legate prin două formule:

Prin urmare, dacă sunt date valorile a trei dintre aceste mărimi, atunci valorile corespunzătoare ale celorlalte două mărimi sunt determinate din aceste formule combinate într-un sistem de două ecuații cu două necunoscute.

O progresie aritmetică este o succesiune monotonă. în care:

  • dacă d > 0 , atunci este în creștere;
  • dacă d < 0 , atunci este în scădere;
  • dacă d = 0 , atunci secvența va fi staționară.

Progresie geometrică

progresie geometrică se numește o secvență, al cărei termen, începând cu al doilea, este egal cu cel anterior, înmulțit cu același număr.

b 1 , b 2 , b 3 , . . . , b n, . . .

este o progresie geometrică dacă pentru orice număr natural n condiția este îndeplinită:

b n +1 = b n · q,

Unde q ≠ 0 - un număr.

Astfel, raportul dintre următorul termen al acestei progresii geometrice și cel precedent este un număr constant:

b 2 / b 1 = b 3 / b 2 = . . . = b n +1 / b n = q.

Număr q numit numitorul unei progresii geometrice.

Pentru a seta o progresie geometrică, este suficient să specificați primul său termen și numitorul.

De exemplu,

dacă b 1 = 1, q = -3 , atunci primii cinci termeni ai secvenței se găsesc după cum urmează:

b 1 = 1,

b 2 = b 1 · q = 1 · (-3) = -3,

b 3 = b 2 · q= -3 · (-3) = 9,

b 4 = b 3 · q= 9 · (-3) = -27,

b 5 = b 4 · q= -27 · (-3) = 81.

b 1 și numitorul q a ei n -al-lea termen poate fi găsit prin formula:

b n = b 1 · q n -1 .

De exemplu,

găsiți al șaptelea termen al unei progresii geometrice 1, 2, 4, . . .

b 1 = 1, q = 2,

b 7 = b 1 · q 6 = 1 2 6 = 64.

bn-1 = b 1 · q n -2 ,

b n = b 1 · q n -1 ,

b n +1 = b 1 · q n,

atunci evident

b n 2 = b n -1 · b n +1 ,

fiecare membru al progresiei geometrice, incepand de la al doilea, este egal cu media geometrica (proportionala) a membrilor anteriori si urmatori.

Întrucât este și inversul adevărat, următoarea afirmație este valabilă:

numerele a, b și c sunt membri consecutivi ai unei progresii geometrice dacă și numai dacă pătratul unuia dintre ele este egal cu produsul celorlalte două, adică unul dintre numere este media geometrică a celorlalte două.

De exemplu,

să demonstrăm că succesiunea dată de formulă b n= -3 2 n , este o progresie geometrică. Să folosim afirmația de mai sus. Avem:

b n= -3 2 n,

b n -1 = -3 2 n -1 ,

b n +1 = -3 2 n +1 .

Prin urmare,

b n 2 = (-3 2 n) 2 = (-3 2 n -1 ) (-3 2 n +1 ) = b n -1 · b n +1 ,

care dovedeşte afirmaţia cerută.

Rețineți că n al treilea termen al unei progresii geometrice poate fi găsit nu numai prin b 1 , dar și orice mandat anterior b k , pentru care este suficient să folosiți formula

b n = b k · q n - k.

De exemplu,

pentru b 5 poate fi scris

b 5 = b 1 · q 4 ,

b 5 = b 2 · q 3,

b 5 = b 3 · q2,

b 5 = b 4 · q.

b n = b k · q n - k,

b n = b n - k · q k,

atunci evident

b n 2 = b n - k· b n + k

pătratul oricărui membru al unei progresii geometrice, începând de la al doilea, este egal cu produsul membrilor acestei progresii echidistante de acesta.

În plus, pentru orice progresie geometrică, egalitatea este adevărată:

b m· b n= b k· b l,

m+ n= k+ l.

De exemplu,

exponenţial

1) b 6 2 = 32 2 = 1024 = 16 · 64 = b 5 · b 7 ;

2) 1024 = b 11 = b 6 · q 5 = 32 · 2 5 = 1024;

3) b 6 2 = 32 2 = 1024 = 8 · 128 = b 4 · b 8 ;

4) b 2 · b 7 = b 4 · b 5 , deoarece

b 2 · b 7 = 2 · 64 = 128,

b 4 · b 5 = 8 · 16 = 128.

S n= b 1 + b 2 + b 3 + . . . + b n

primul n membrii unei progresii geometrice cu numitor q 0 calculat prin formula:

Și atunci când q = 1 - conform formulei

S n= n.b. 1

Rețineți că dacă trebuie să însumăm termenii

b k, b k +1 , . . . , b n,

atunci se folosește formula:

S n- S k -1 = b k + b k +1 + . . . + b n = b k · 1 - q n - k +1
.
1 - q

De exemplu,

exponenţial 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S 10 = 1 + 2 + . . . + 512 = 1 · (1 - 2 10) / (1 - 2) = 1023;

64 + 128 + 256 + 512 = S 10 - S 6 = 64 · (1 - 2 10-7+1) / (1 - 2) = 960.

Dacă este dată o progresie geometrică, atunci mărimile b 1 , b n, q, nși S n legate prin două formule:

Prin urmare, dacă sunt date valorile oricărei trei dintre aceste mărimi, atunci valorile corespunzătoare ale celorlalte două mărimi sunt determinate din aceste formule combinate într-un sistem de două ecuații cu două necunoscute.

Pentru o progresie geometrică cu primul termen b 1 și numitorul q au loc următoarele proprietăți de monotonitate :

  • progresia crește dacă este îndeplinită una dintre următoarele condiții:

b 1 > 0 și q> 1;

b 1 < 0 și 0 < q< 1;

  • O progresie este în scădere dacă este îndeplinită una dintre următoarele condiții:

b 1 > 0 și 0 < q< 1;

b 1 < 0 și q> 1.

În cazul în care un q< 0 , atunci progresia geometrică este alternantă de semne: termenii săi impari au același semn ca primul său termen, iar termenii pari au semnul opus. Este clar că o progresie geometrică alternativă nu este monotonă.

Produsul primului n termenii unei progresii geometrice pot fi calculați prin formula:

P n= b 1 · b 2 · b 3 · . . . · b n = (b 1 · b n) n / 2 .

De exemplu,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128) 8/2 = 128 4 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48) 5/2 = (144 1/2) 5 = 12 5 = 248 832.

Progresie geometrică în scădere infinită

Progresie geometrică în scădere infinită se numește progresie geometrică infinită al cărei modul numitorului este mai mic decât 1 , acesta este

|q| < 1 .

Rețineți că o progresie geometrică infinit descrescătoare poate să nu fie o succesiune descrescătoare. Acest lucru se potrivește cazului

1 < q< 0 .

Cu un astfel de numitor, succesiunea este alternantă de semne. De exemplu,

1, - 1 / 2 , 1 / 4 , - 1 / 8 , . . . .

Suma unei progresii geometrice infinit descrescătoare numiți numărul la care suma primului n termenii progresiei cu o creștere nelimitată a numărului n . Acest număr este întotdeauna finit și este exprimat prin formula

S= b 1 + b 2 + b 3 + . . . = b 1
.
1 - q

De exemplu,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 - 0,1) = 11 1 / 9 ,

10 - 1 + 0,1 - 0,01 + . . . = 10 / (1 + 0,1) = 9 1 / 11 .

Relația dintre progresiile aritmetice și geometrice

Progresiile aritmetice și geometrice sunt strâns legate. Să luăm în considerare doar două exemple.

A 1 , A 2 , A 3 , . . . d , apoi

b a 1 , b a 2 , b a 3 , . . . b d .

De exemplu,

1, 3, 5, . . . — progresie aritmetică cu diferență 2 și

7 1 , 7 3 , 7 5 , . . . este o progresie geometrică cu numitor 7 2 .

b 1 , b 2 , b 3 , . . . este o progresie geometrică cu numitor q , apoi

log a b 1, log a b 2, log a b 3, . . . — progresie aritmetică cu diferență log aq .

De exemplu,

2, 12, 72, . . . este o progresie geometrică cu numitor 6 și

lg 2, lg 12, lg 72, . . . — progresie aritmetică cu diferență lg 6 .

Conceptul de succesiune numerică implică faptul că fiecărui număr natural îi corespunde o anumită valoare reală. O astfel de serie de numere poate fi atât arbitrară, cât și poate avea anumite proprietăți - o progresie. În acest din urmă caz, fiecare element (membru) ulterior al secvenței poate fi calculat folosind cel anterior.

O progresie aritmetică este o succesiune de valori numerice în care membrii săi vecini diferă unul de celălalt prin același număr (toate elementele seriei, începând cu a 2-a, au o proprietate similară). Acest număr - diferența dintre membrul anterior și cel următor - este constant și se numește diferență de progresie.

Diferența de progresie: definiție

Considerăm o succesiune formată din j valori A = a(1), a(2), a(3), a(4) … a(j), j aparține mulțimii numerelor naturale N. O progresie aritmetică, conform definiției sale, este o secvență , în care a(3) - a(2) = a(4) - a(3) = a(5) - a(4) = ... = a(j) - a(j-1) = d. Valoarea lui d este diferența dorită a acestei progresii.

d = a(j) - a(j-1).

Aloca:

  • O progresie crescătoare, caz în care d > 0. Exemplu: 4, 8, 12, 16, 20, …
  • progresie descrescătoare, apoi d< 0. Пример: 18, 13, 8, 3, -2, …

Diferența de progresie și elementele sale arbitrare

Dacă se cunosc 2 membri arbitrari ai progresiei (i-th, k-th), atunci diferența pentru această secvență poate fi stabilită pe baza relației:

a(i) = a(k) + (i - k)*d, deci d = (a(i) - a(k))/(i-k).

Diferența de progresie și primul său termen

Această expresie va ajuta la determinarea valorii necunoscute numai în cazurile în care numărul elementului de secvență este cunoscut.

Diferența de progresie și suma ei

Suma unei progresii este suma membrilor săi. Pentru a calcula valoarea totală a primelor sale j elemente, utilizați formula corespunzătoare:

S(j) =((a(1) + a(j))/2)*j, dar din moment ce a(j) = a(1) + d(j – 1), apoi S(j) = ((a(1) + a(1) + d(j – 1))/2)*j=(( 2a(1) + d(– 1))/2)*j.

IV Yakovlev | Materiale de matematică | MathUs.ru

Progresie aritmetică

O progresie aritmetică este un tip special de secvență. Prin urmare, înainte de a defini o progresie aritmetică (și apoi geometrică), trebuie să discutăm pe scurt conceptul important al unei secvențe de numere.

Urmare

Imaginează-ți un dispozitiv pe ecranul căruia sunt afișate unele numere unul după altul. Să spunem 2; 7; 13; unu; 6; 0; 3; : : : Un astfel de set de numere este doar un exemplu de succesiune.

Definiție. O secvență numerică este un set de numere în care fiecărui număr i se poate atribui un număr unic (adică pus în corespondență cu un singur număr natural)1. Numărul cu numărul n se numește al n-lea membru al șirului.

Deci, în exemplul de mai sus, primul număr are numărul 2, care este primul membru al secvenței, care poate fi notat cu a1; numărul cinci are numărul 6 care este al cincilea membru al secvenței, care poate fi notat a5 . În general, al-lea membru secvențele sunt notate cu un (sau bn , cn , etc.).

O situație foarte convenabilă este atunci când al n-lea membru al secvenței poate fi specificat printr-o formulă. De exemplu, formula an = 2n 3 specifică succesiunea: 1; unu; 3; 5; 7; : : : Formula an = (1)n definește șirul: 1; unu; unu; unu; : : :

Nu orice set de numere este o secvență. Deci, un segment nu este o secvență; conține ¾prea multe¿ numere pentru a fi renumerotate. Mulțimea R a tuturor numere reale nici nu este o secvență. Aceste fapte sunt dovedite în cursul analizei matematice.

Progresia aritmetică: definiții de bază

Acum suntem gata să definim o progresie aritmetică.

Definiție. O progresie aritmetică este o succesiune în care fiecare termen (începând cu al doilea) este egal cu suma termenului anterior și a unui număr fix (numit diferența progresiei aritmetice).

De exemplu, secvența 2; 5; opt; unsprezece; : : : este o progresie aritmetică cu primul termen 2 și diferența 3. Secvența 7; 2; 3; opt; : : : este o progresie aritmetică cu primul termen 7 și diferența 5. Secvența 3; 3; 3; : : : este o progresie aritmetică cu diferență zero.

Definiție echivalentă: O secvență an se numește progresie aritmetică dacă diferența an+1 an este o valoare constantă (nu depinde de n).

Se spune că o progresie aritmetică crește dacă diferența este pozitivă și descrește dacă diferența este negativă.

1 Și iată o definiție mai concisă: o secvență este o funcție definită pe mulțimea numerelor naturale. De exemplu, șirul numerelor reale este funcția f: N! R.

În mod implicit, secvențele sunt considerate infinite, adică care conțin un număr infinit de numere. Dar nimeni nu se deranjează să ia în considerare și secvențele finite; de fapt, orice set finit de numere poate fi numită o secvență finită. De exemplu, secvența finală unu; 2; 3; patru; 5 este format din cinci numere.

Formula celui de-al n-lea membru al unei progresii aritmetice

Este ușor de înțeles că o progresie aritmetică este complet determinată de două numere: primul termen și diferența. Prin urmare, se pune întrebarea: cum, cunoscând primul termen și diferența, găsim un termen arbitrar al unei progresii aritmetice?

Nu este greu de obținut formula dorită pentru al n-lea termen al unei progresii aritmetice. Lasă an

progresie aritmetică cu diferență d. Avem:

an+1 = an + d (n = 1; 2; : ::):

În special, scriem:

a2 = a1 + d;

a3 = a2 + d = (a1 + d) + d = a1 + 2d;

a4 = a3 + d = (a1 + 2d) + d = a1 + 3d;

și acum devine clar că formula pentru an este:

an = a1 + (n 1)d:

Sarcina 1. În progresia aritmetică 2; 5; opt; unsprezece; : : : găsiți formula celui de-al n-lea termen și calculați al sutelea termen.

Soluţie. Conform formulei (1) avem:

an = 2 + 3(n 1) = 3n 1:

a100 = 3 100 1 = 299:

Proprietatea și semnul progresiei aritmetice

proprietatea unei progresii aritmetice. În progresie aritmetică an pentru orice

Cu alte cuvinte, fiecare membru al progresiei aritmetice (începând cu al doilea) este media aritmetică a membrilor vecini.

Dovada. Avem:

a n 1+ a n+1

(an d) + (an + d)

care este ceea ce s-a cerut.

Mai general, progresia aritmetică an satisface egalitatea

a n = a n k+ a n+k

pentru orice n > 2 și orice k natural< n. Попробуйте самостоятельно доказать эту формулу тем же самым приёмом, что и формулу (2 ).

Se pare că formula (2) nu este doar o condiție necesară, ci și suficientă pentru ca o secvență să fie o progresie aritmetică.

Semnul unei progresii aritmetice. Dacă egalitatea (2) este valabilă pentru toate n > 2, atunci șirul an este o progresie aritmetică.

Dovada. Să rescriem formula (2) după cum urmează:

a na n 1= a n+1a n:

Aceasta arată că diferența an+1 an nu depinde de n, iar asta înseamnă doar că șirul an este o progresie aritmetică.

Proprietatea și semnul unei progresii aritmetice pot fi formulate ca o singură afirmație; vom face acest lucru pentru comoditate trei numere(Aceasta este situația care apare adesea în sarcini).

Caracterizarea unei progresii aritmetice. Trei numere a, b, c formează o progresie aritmetică dacă și numai dacă 2b = a + c.

Problema 2. (Universitatea de Stat din Moscova, Facultatea de Economie, 2007) Trei numere 8x, 3 x2 și 4 în ordinea specificată formează o progresie aritmetică descrescătoare. Găsiți x și scrieți diferența acestei progresii.

Soluţie. Prin proprietatea unei progresii aritmetice, avem:

2(3 x2 ) = 8x 4 , 2x2 + 8x 10 = 0 , x2 + 4x 5 = 0 , x = 1; x=5:

Dacă x = 1, atunci se obține o progresie descrescătoare de 8, 2, 4 cu o diferență de 6. Dacă x = 5, atunci se obține o progresie crescătoare de 40, 22, 4; acest caz nu merge.

Răspuns: x = 1, diferența este 6.

Suma primilor n termeni ai unei progresii aritmetice

Legenda spune că odată profesorul le-a spus copiilor să găsească suma numerelor de la 1 la 100 și s-a așezat să citească în liniște ziarul. Cu toate acestea, în câteva minute, un băiat a spus că a rezolvat problema. Era Carl Friedrich Gauss, în vârstă de 9 ani, mai târziu unul dintre cei mai mari matematicieni din istorie.

Ideea micuțului Gauss a fost aceasta. Lăsa

S = 1 + 2 + 3 + : : : + 98 + 99 + 100:

Să scriem această sumă în ordine inversă:

S = 100 + 99 + 98 + : : : + 3 + 2 + 1;

și adăugați aceste două formule:

2S = (1 + 100) + (2 + 99) + (3 + 98) + : : : + (98 + 3) + (99 + 2) + (100 + 1):

Fiecare termen dintre paranteze este egal cu 101 și există 100 de astfel de termeni în total.

2S = 101 100 = 10100;

Folosim această idee pentru a deriva formula sumei

S = a1 + a2 + : : : + an + a n n: (3)

O modificare utilă a formulei (3) se obține prin înlocuirea formulei pentru al n-lea termen an = a1 + (n 1)d în ea:

2a1 + (n 1)d

Sarcina 3. Aflați suma tuturor numerelor pozitive din trei cifre divizibile cu 13.

Soluţie. Numerele din trei cifre care sunt multipli ai lui 13 formează o progresie aritmetică cu primul termen 104 și diferența 13; Al n-lea termen al acestei progresii este:

an = 104 + 13(n 1) = 91 + 13n:

Să aflăm câți membri conține progresul nostru. Pentru a face acest lucru, rezolvăm inegalitatea:

un 6999; 91 + 13n 6999;

n 6 908 13 = 6911 13; n 6 69:

Deci sunt 69 de membri în evoluția noastră. Conform formulei (4) găsim suma necesară:

S = 2 104 + 68 13 69 = 37674: 2

Notite importante!
1. Dacă în loc de formule vedeți abracadabra, ștergeți memoria cache. Cum se face în browser este scris aici:
2. Înainte de a începe să citești articolul, fii atent la navigatorul nostru cel mai mult resursă utilă pentru

Secvență numerică

Așa că hai să ne așezăm și să începem să scriem câteva numere. De exemplu:
Puteți scrie orice numere și pot fi câte doriți (în cazul nostru, ele). Indiferent câte numere am scrie, putem spune întotdeauna care dintre ele este primul, care este al doilea și tot așa până la ultimul, adică le putem numerota. Acesta este un exemplu de succesiune de numere:

Secvență numerică
De exemplu, pentru secvența noastră:

Numărul atribuit este specific unui singur număr de secvență. Cu alte cuvinte, nu există trei numere secunde în succesiune. Al doilea număr (ca și al-lea număr) este întotdeauna același.
Numărul cu numărul se numește --lea membru al secvenței.

De obicei, numim întreaga secvență o literă (de exemplu,) și fiecare membru al acestei secvențe - aceeași literă cu un indice egal cu numărul acestui membru: .

În cazul nostru:

Să presupunem că avem o succesiune numerică în care diferența dintre numerele adiacente este aceeași și egală.
De exemplu:

etc.
O astfel de succesiune numerică se numește progresie aritmetică.
Termenul de „progresie” a fost introdus de autorul roman Boethius încă din secolul al VI-lea și a fost înțeles într-un sens mai larg ca o secvență numerică nesfârșită. Numele „aritmetică” a fost transferat din teoria proporțiilor continue, în care s-au implicat grecii antici.

Aceasta este o secvență numerică, fiecare membru al căruia este egal cu cel precedent, adăugat cu același număr. Acest număr se numește diferența unei progresii aritmetice și se notează.

Încercați să determinați care secvențe de numere sunt o progresie aritmetică și care nu sunt:

A)
b)
c)
d)

Am înţeles? Comparați răspunsurile noastre:
Este progresie aritmetică - b, c.
Nu este progresie aritmetică - a, d.

Să revenim la progresia dată () și să încercăm să găsim valoarea celui de-al-lea membru al acesteia. Există Două mod de a-l găsi.

1. Metoda

Putem adăuga la valoarea anterioară a numărului de progresie până ajungem la al treilea termen al progresiei. Este bine că nu avem multe de rezumat - doar trei valori:

Deci, al-lea membru al progresiei aritmetice descrise este egal cu.

2. Calea

Ce se întâmplă dacă ar trebui să găsim valoarea celui de-al treilea termen al progresiei? Însumarea ne-ar fi luat mai mult de o oră și nu este un fapt că nu am fi făcut greșeli la adunarea numerelor.
Desigur, matematicienii au venit cu o modalitate prin care nu trebuie să adăugați diferența unei progresii aritmetice la valoarea anterioară. Priviți cu atenție imaginea desenată ... Cu siguranță ați observat deja un anumit model, și anume:

De exemplu, să vedem ce formează valoarea celui de-al-lea membru al acestei progresii aritmetice:


Cu alte cuvinte:

Încercați să găsiți în mod independent în acest fel valoarea unui membru al acestei progresii aritmetice.

Calculat? Comparați intrările dvs. cu răspunsul:

Atenție că ați obținut exact același număr ca în metoda anterioară, când am adăugat succesiv membrii unei progresii aritmetice la valoarea anterioară.
Să încercăm să „depersonalizăm” această formulă- adu-o la forma generala si ia:

Ecuația de progresie aritmetică.

Progresiile aritmetice sunt fie în creștere, fie în scădere.

Crescând- progresii în care fiecare valoare ulterioară a termenilor este mai mare decât cea anterioară.
De exemplu:

Descendentă- progresii în care fiecare valoare ulterioară a termenilor este mai mică decât cea anterioară.
De exemplu:

Formula derivată este utilizată în calculul termenilor atât în ​​termeni crescanți, cât și în termeni descrescători ai unei progresii aritmetice.
Să verificăm în practică.
Ni se oferă o progresie aritmetică constând din următoarele numere:


De atunci:

Astfel, am fost convinși că formula funcționează atât în ​​progresie aritmetică descrescătoare, cât și în creștere.
Încercați să găsiți singuri membrii --lea și --lea din această progresie aritmetică.

Să comparăm rezultatele:

Proprietatea progresiei aritmetice

Să complicăm sarcina - derivăm proprietatea unei progresii aritmetice.
Să presupunem că ni se oferă următoarea condiție:
- progresie aritmetică, găsiți valoarea.
E ușor, zici tu, și începeți să numărați după formula pe care o cunoașteți deja:

Fie, a, atunci:

Absolut corect. Se pare că mai întâi găsim, apoi îl adăugăm la primul număr și obținem ceea ce căutăm. Dacă progresia este reprezentată de valori mici, atunci nu este nimic complicat, dar dacă ni se dau numere în stare? De acord, există posibilitatea de a face greșeli în calcule.
Acum gândiți-vă, este posibil să rezolvați această problemă într-un singur pas folosind orice formulă? Desigur, da, și vom încerca să-l scoatem acum.

Să notăm termenul dorit al progresiei aritmetice, deoarece știm formula pentru a-l găsi - aceasta este aceeași formulă pe care am derivat-o la început:
, apoi:

  • membrul anterior al progresiei este:
  • următorul termen al progresiei este:

Să însumăm membrii anteriori și următori ai progresiei:

Rezultă că suma membrilor anteriori și următori ai progresiei este de două ori valoarea membrului progresiei situat între ei. Cu alte cuvinte, pentru a găsi valoarea unui membru de progresie cu valori anterioare și succesive cunoscute, este necesar să le adunăm și să le împărțim la.

Așa e, avem același număr. Să reparăm materialul. Calculați singur valoarea progresiei, pentru că nu este deloc dificil.

Bine făcut! Știi aproape totul despre progres! Rămâne să aflăm o singură formulă, pe care, potrivit legendei, unul dintre cei mai mari matematicieni ai tuturor timpurilor, „regele matematicienilor” - Karl Gauss, a dedus-o cu ușurință pentru el însuși...

Când Carl Gauss avea 9 ani, profesorul, ocupat să verifice munca elevilor din alte clase, a cerut următoarea sarcină la lecție: „Calculează suma tuturor numerelor naturale de la până la (după alte surse până la) inclusiv. " Care a fost surpriza profesorului când unul dintre elevii săi (era Karl Gauss) după un minut a dat răspunsul corect la sarcină, în timp ce majoritatea colegilor de clasă ai temerului după calcule lungi au primit rezultatul greșit...

Tânărul Carl Gauss a observat un model pe care îl puteți observa cu ușurință.
Să presupunem că avem o progresie aritmetică constând din membri -ti: Trebuie să găsim suma membrilor dați ai progresiei aritmetice. Desigur, putem să însumăm manual toate valorile, dar ce se întâmplă dacă trebuie să găsim suma termenilor săi în sarcină, așa cum căuta Gauss?

Să descriem progresul care ni s-a dat. Priviți cu atenție numerele evidențiate și încercați să efectuați diverse operații matematice cu ele.


Încercat? Ce ai observat? Corect! Sumele lor sunt egale


Acum răspunde, câte astfel de perechi vor fi în progresia dată nouă? Desigur, exact jumătate din toate numerele, adică.
Pe baza faptului că suma a doi termeni ai unei progresii aritmetice este egală și perechi egale similare, obținem că suma totală este egală cu:
.
Astfel, formula pentru suma primilor termeni ai oricărei progresii aritmetice va fi:

În unele probleme, nu cunoaștem al treilea termen, dar cunoaștem diferența de progresie. Încercați să înlocuiți în formula sumei, formula celui de-al-lea membru.
Ce ai primit?

Bine făcut! Acum să revenim la problema care i-a fost dată lui Carl Gauss: calculați singuri care este suma numerelor care încep de la -th și suma numerelor începând de la -th.

Cât ai primit?
Gauss a dovedit că suma termenilor este egală, iar suma termenilor. Asa te-ai hotarat?

De fapt, formula pentru suma membrilor unei progresii aritmetice a fost dovedită de omul de știință grec antic Diophantus încă din secolul al III-lea și, de-a lungul acestui timp, oamenii plini de spirit au folosit proprietățile unei progresii aritmetice cu putere și principal.
De exemplu, imaginați-vă Egiptul anticși cel mai mare șantier de construcție din acea vreme - construcția unei piramide ... Figura arată o parte a acesteia.

Unde este progresia aici spui tu? Privește cu atenție și găsește un model în numărul de blocuri de nisip din fiecare rând al peretelui piramidei.


De ce nu o progresie aritmetică? Numărați câte blocuri sunt necesare pentru a construi un perete dacă cărămizi bloc sunt plasate în bază. Sper că nu vei număra mișcând degetul pe monitor, îți amintești ultima formulă și tot ce am spus despre progresia aritmetică?

În acest caz, progresia arată astfel:
Diferența de progresie aritmetică.
Numărul de membri ai unei progresii aritmetice.
Să substituim datele noastre în ultimele formule (numărăm numărul de blocuri în 2 moduri).

Metoda 1.

Metoda 2.

Și acum puteți calcula și pe monitor: comparați valorile obținute cu numărul de blocuri care se află în piramida noastră. A fost de acord? Bravo, ai stăpânit suma celor trei termeni ai unei progresii aritmetice.
Desigur, nu poți construi o piramidă din blocurile de la bază, dar din? Încercați să calculați câte cărămizi de nisip sunt necesare pentru a construi un zid cu această condiție.
Ai reușit?
Răspunsul corect este blocurile:

A face exerciţii fizice

Sarcini:

  1. Masha se pune în formă pentru vară. În fiecare zi crește numărul de genuflexiuni cu. De câte ori se va ghemui Masha în săptămâni dacă a făcut genuflexiuni la primul antrenament.
  2. Care este suma tuturor numerelor impare conținute în.
  3. Când depozitează buștenii, tăietorii de lemne le stivuiesc în așa fel încât fiecare strat superior conține un jurnal mai puțin decât cel precedent. Câți bușteni sunt într-o zidărie, dacă baza zidăriei este bușteni.

Raspunsuri:

  1. Să definim parametrii progresiei aritmetice. În acest caz
    (săptămâni = zile).

    Răspuns:În două săptămâni, Masha ar trebui să se ghemuiască o dată pe zi.

  2. Primul număr impar, ultimul număr.
    Diferența de progresie aritmetică.
    Cu toate acestea, numărul de numere impare din - jumătate, verificați acest fapt folosind formula pentru găsirea celui de-al-lea membru al unei progresii aritmetice:

    Numerele conțin numere impare.
    Înlocuim datele disponibile în formula:

    Răspuns: Suma tuturor numerelor impare conținute în este egală cu.

  3. Amintiți-vă problema despre piramide. Pentru cazul nostru, a , deoarece fiecare strat superior este redus cu un buștean, există doar o grămadă de straturi, adică.
    Înlocuiți datele din formula:

    Răspuns: Sunt bușteni în zidărie.

Rezumând

  1. - o succesiune numerică în care diferența dintre numerele adiacente este aceeași și egală. Este în creștere și în scădere.
  2. Găsirea formulei Al-lea membru al unei progresii aritmetice se scrie prin formula - , unde este numărul de numere din progresie.
  3. Proprietatea membrilor unei progresii aritmetice- - unde - numărul de numere din progresie.
  4. Suma membrilor unei progresii aritmetice poate fi găsit în două moduri:

    , unde este numărul de valori.

PROGRESIA ARITMETICĂ. NIVEL MEDIU

Secvență numerică

Să ne așezăm și să începem să scriem câteva numere. De exemplu:

Puteți scrie orice numere și pot fi câte doriți. Dar poți spune întotdeauna care dintre ele este primul, care este al doilea și așa mai departe, adică le putem număra. Acesta este un exemplu de succesiune de numere.

Secvență numerică este un set de numere, fiecăruia cărora li se poate atribui un număr unic.

Cu alte cuvinte, fiecare număr poate fi asociat cu un anumit număr natural și doar unul. Și nu vom atribui acest număr niciunui alt număr din acest set.

Numărul cu numărul se numește --lea membru al secvenței.

De obicei, numim întreaga secvență o literă (de exemplu,) și fiecare membru al acestei secvențe - aceeași literă cu un indice egal cu numărul acestui membru: .

Este foarte convenabil dacă al-lea membru al secvenței poate fi dat printr-o formulă. De exemplu, formula

stabilește secvența:

Și formula este următoarea succesiune:

De exemplu, o progresie aritmetică este o secvență (primul termen aici este egal și diferența). Sau (, diferență).

al n-lea termen formulă

Numim recurentă o formulă în care, pentru a afla cel de-al treilea termen, trebuie să-l cunoști pe anterior sau pe mai multe anterioare:

Pentru a găsi, de exemplu, cel de-al treilea termen al progresiei folosind o astfel de formulă, trebuie să-i calculăm pe cei nouă anteriori. De exemplu, lasa. Apoi:

Ei bine, acum e clar care este formula?

În fiecare linie, adunăm la, înmulțit cu un anumit număr. Pentru ce? Foarte simplu: acesta este numărul membrului curent minus:

Mult mai confortabil acum, nu? Verificăm:

Decide pentru tine:

Într-o progresie aritmetică, găsiți formula pentru al n-lea termen și găsiți al sutelea termen.

Soluţie:

Primul membru este egal. Și care este diferența? Și iată ce:

(la urma urmei, se numește diferență deoarece este egală cu diferența membrilor succesivi ai progresiei).

Deci formula este:

Atunci al sutelea termen este:

Care este suma tuturor numerelor naturale de la până la?

Potrivit legendei, marele matematician Carl Gauss, fiind un băiețel de 9 ani, a calculat această sumă în câteva minute. El a observat că suma primului și ultimului număr este egală, suma celui de-al doilea și penultimul este aceeași, suma celui de-al treilea și al 3-lea de la sfârșit este aceeași și așa mai departe. Câte astfel de perechi există? Așa este, exact jumătate din numărul tuturor numerelor, adică. Asa de,

Formula generală pentru suma primilor termeni ai oricărei progresii aritmetice va fi:

Exemplu:
Găsiți suma tuturor numere din două cifre, multipli.

Soluţie:

Primul astfel de număr este acesta. Fiecare următor se obține prin adăugarea unui număr celui precedent. Astfel, numerele care ne interesează formează o progresie aritmetică cu primul termen și diferența.

Formula pentru al treilea termen pentru această progresie este:

Câți termeni sunt în progresie dacă toți trebuie să fie de două cifre?

Foarte usor: .

Ultimul termen al progresiei va fi egal. Apoi suma:

Răspuns: .

Acum decideți singuri:

  1. În fiecare zi, sportivul aleargă cu 1 m mai mult decât în ​​ziua precedentă. Câți kilometri va alerga în săptămâni dacă a alergat km m în prima zi?
  2. Un biciclist parcurge mai multe mile în fiecare zi decât precedentul. În prima zi a parcurs km. Câte zile trebuie să conducă pentru a parcurge un kilometru? Câți kilometri va parcurge în ultima zi de călătorie?
  3. Prețul unui frigider în magazin este redus cu aceeași sumă în fiecare an. Stabiliți cât de mult a scăzut prețul unui frigider în fiecare an dacă, scos la vânzare pentru ruble, șase ani mai târziu a fost vândut pentru ruble.

Raspunsuri:

  1. Cel mai important lucru aici este să recunoașteți progresia aritmetică și să determinați parametrii acesteia. În acest caz, (săptămâni = zile). Trebuie să determinați suma primilor termeni ai acestei progresii:
    .
    Răspuns:
  2. Aici este dat:, este necesar să se găsească.
    Evident, trebuie să utilizați aceeași formulă de sumă ca în problema anterioară:
    .
    Înlocuiți valorile:

    Rădăcina evident nu se potrivește, deci răspunsul.
    Să calculăm distanța parcursă în ultima zi folosind formula celui de-al treilea termen:
    (km).
    Răspuns:

  3. Dat: . Găsi: .
    Nu devine mai ușor:
    (freca).
    Răspuns:

PROGRESIA ARITMETICĂ. SCURT DESPRE PRINCIPALA

Aceasta este o succesiune numerică în care diferența dintre numerele adiacente este aceeași și egală.

Progresia aritmetică este în creștere () și în scădere ().

De exemplu:

Formula pentru găsirea celui de-al n-lea membru al unei progresii aritmetice

se scrie sub formă de formulă, unde este numărul de numere din progresie.

Proprietatea membrilor unei progresii aritmetice

Ușurează găsirea unui membru al progresiei dacă membrii săi vecini sunt cunoscuți - unde este numărul de numere din progresie.

Suma membrilor unei progresii aritmetice

Există două moduri de a găsi suma:

Unde este numărul de valori.

Unde este numărul de valori.

Ei bine, subiectul s-a terminat. Dacă citești aceste rânduri, atunci ești foarte cool.

Pentru că doar 5% dintre oameni sunt capabili să stăpânească ceva pe cont propriu. Și dacă ai citit până la capăt, atunci ești în 5%!

Acum cel mai important lucru.

Ți-ai dat seama de teoria pe această temă. Și, repet, este... pur și simplu super! Ești deja mai bun decât marea majoritate a colegilor tăi.

Problema este că acest lucru poate să nu fie suficient...

Pentru ce?

Pentru succes promovarea examenului, pentru admiterea la institut la buget și, CEL MAI IMPORTANT, pe viață.

Nu te voi convinge de nimic, o să spun doar un lucru...

Oamenii care au primit o educație bună, câștigă mult mai mult decât cei care nu l-au primit. Aceasta este statistica.

Dar acesta nu este principalul lucru.

Principalul lucru este că sunt MAI FERICIȚI (există astfel de studii). Poate pentru că în fața lor se deschid mult mai multe oportunități și viața devine mai strălucitoare? nu stiu...

Dar gandeste-te singur...

Ce este nevoie pentru a fi sigur că ești mai bun decât alții la examen și, în cele din urmă, fii... mai fericit?

UMPLȚI-VĂ MÂNA, REzolVÂND PROBLEME PE ACEST TEMA.

La examen, nu vi se va cere teorie.

Vei avea nevoie rezolva problemele la timp.

Și, dacă nu le-ai rezolvat (MULTE!), cu siguranță vei face o greșeală stupidă undeva sau pur și simplu nu vei reuși la timp.

Este ca în sport - trebuie să repeți de multe ori pentru a câștiga cu siguranță.

Găsiți o colecție oriunde doriți neapărat cu soluții analiză detaliată si decide, decide, decide!

Puteți folosi sarcinile noastre (nu este necesar) și cu siguranță le recomandăm.

Pentru a obține o mână de lucru cu ajutorul sarcinilor noastre, trebuie să contribuiți la prelungirea duratei de viață a manualului YouClever pe care îl citiți în prezent.

Cum? Există două opțiuni:

  1. Deblocați accesul la toate sarcinile ascunse din acest articol -
  2. Deblocați accesul la toate sarcinile ascunse din toate cele 99 de articole din tutorial - Cumpărați un manual - 499 de ruble

Da, avem 99 de astfel de articole în manual și accesul la toate sarcinile și toate textele ascunse din ele poate fi deschis imediat.

Accesul la toate sarcinile ascunse este asigurat pe toată durata de viață a site-ului.

In concluzie...

Dacă nu vă plac sarcinile noastre, găsiți altele. Doar nu te opri cu teorie.

„Înțeles” și „Știu să rezolv” sunt abilități complet diferite. Ai nevoie de amândouă.

Găsiți probleme și rezolvați!

Când studiezi algebra în scoala de invatamant general(Clasa 9) unul dintre subiecte importante este studiul șirurilor numerice, care includ progresii - geometrice și aritmetice. În acest articol, vom lua în considerare o progresie aritmetică și exemple cu soluții.

Ce este o progresie aritmetică?

Pentru a înțelege acest lucru, este necesar să se dea o definiție a progresiei luate în considerare, precum și să se dea formulele de bază care vor fi utilizate în continuare în rezolvarea problemelor.

Se știe că în unele progresii algebrice primul termen este egal cu 6, iar al 7-lea termen este egal cu 18. Este necesar să găsim diferența și să restabilim această secvență la al 7-lea termen.

Să folosim formula pentru a determina termenul necunoscut: a n = (n - 1) * d + a 1 . Înlocuim datele cunoscute din condiție în ea, adică numerele a 1 și a 7, avem: 18 \u003d 6 + 6 * d. Din această expresie, puteți calcula cu ușurință diferența: d = (18 - 6) / 6 = 2. Astfel, s-a răspuns la prima parte a problemei.

Pentru a restabili secvența celui de-al 7-lea membru, ar trebui să utilizați definiția unei progresii algebrice, adică a 2 = a 1 + d, a 3 = a 2 + d și așa mai departe. Ca rezultat, restabilim întreaga secvență: a 1 = 6, a 2 = 6 + 2=8, a 3 = 8 + 2 = 10, a 4 = 10 + 2 = 12, a 5 = 12 + 2 = 14 , a 6 = 14 + 2 = 16 și 7 = 18.

Exemplul #3: realizarea unei progresii

Să facem totul mai greu stare mai puternică sarcini. Acum trebuie să răspundeți la întrebarea cum să găsiți o progresie aritmetică. poate conduce exemplul următor: se dau două numere, de exemplu, - 4 și 5. Este necesar să se facă o progresie algebrică astfel încât să mai fie plasați trei termeni între aceștia.

Înainte de a începe să rezolvați această problemă, este necesar să înțelegeți ce loc vor ocupa numerele date în progresia viitoare. Deoarece vor mai exista trei termeni între ei, apoi un 1 \u003d -4 și un 5 \u003d 5. După ce am stabilit acest lucru, trecem la o sarcină similară celei anterioare. Din nou, pentru al n-lea termen, folosim formula, obținem: a 5 \u003d a 1 + 4 * d. De la: d \u003d (a 5 - a 1) / 4 \u003d (5 - (-4)) / 4 \u003d 2,25. Aici nu am primit o valoare întreagă a diferenței, dar este Numar rational, deci formulele pentru progresia algebrică rămân aceleași.

Acum să adăugăm diferența găsită la un 1 și să restabilim membrii lipsă ai progresiei. Obținem: a 1 = - 4, a 2 = - 4 + 2,25 = - 1,75, a 3 = -1,75 + 2,25 = 0,5, a 4 = 0,5 + 2,25 = 2,75, a 5 \u003d 2,75 + 2,25 \u, 50 care a coincis cu starea problemei.

Exemplul #4: primul membru al progresiei

Continuăm să dăm exemple de progresie aritmetică cu o soluție. În toate problemele anterioare, era cunoscut primul număr al progresiei algebrice. Acum luați în considerare o problemă de alt tip: să fie date două numere, unde a 15 = 50 și a 43 = 37. Este necesar să aflăm de la ce număr începe această succesiune.

Formulele care au fost folosite până acum presupun cunoașterea a 1 și d. Nu se știe nimic despre aceste cifre în starea problemei. Cu toate acestea, să scriem expresiile pentru fiecare termen despre care avem informații: a 15 = a 1 + 14 * d și a 43 = a 1 + 42 * d. Avem două ecuații în care există 2 mărimi necunoscute (a 1 și d). Aceasta înseamnă că problema se reduce la rezolvarea unui sistem de ecuații liniare.

Sistemul specificat este cel mai ușor de rezolvat dacă exprimați un 1 în fiecare ecuație și apoi comparați expresiile rezultate. Prima ecuație: a 1 = a 15 - 14 * d = 50 - 14 * d; a doua ecuație: a 1 \u003d a 43 - 42 * d \u003d 37 - 42 * d. Echivalând aceste expresii, obținem: 50 - 14 * d \u003d 37 - 42 * d, de unde diferența d \u003d (37 - 50) / (42 - 14) \u003d - 0,464 (sunt date doar 3 zecimale).

Cunoscând d, puteți folosi oricare dintre cele 2 expresii de mai sus pentru a 1 . De exemplu, mai întâi: a 1 \u003d 50 - 14 * d \u003d 50 - 14 * (- 0,464) \u003d 56,496.

Dacă există îndoieli cu privire la rezultat, îl puteți verifica, de exemplu, determinați al 43-lea membru al progresiei, care este specificat în condiție. Obținem: a 43 \u003d a 1 + 42 * d \u003d 56,496 + 42 * (- 0,464) \u003d 37,008. O mică eroare se datorează faptului că în calcule a fost utilizată rotunjirea la miimi.

Exemplul #5: Sumă

Acum să ne uităm la câteva exemple cu soluții pentru suma unei progresii aritmetice.

Să se dea o progresie numerică de următoarea formă: 1, 2, 3, 4, ...,. Cum se calculează suma a 100 dintre aceste numere?

Datorită dezvoltării tehnologia calculatoarelor puteți rezolva această problemă, adică adăugați secvențial toate numerele, care Mașină de calcul va face de îndată ce persoana apasă tasta Enter. Problema poate fi însă rezolvată mental dacă acordați atenție că seria de numere prezentată este o progresie algebrică, iar diferența ei este 1. Aplicând formula pentru sumă, obținem: S n = n * (a 1 + a n) / 2 = 100 * (1 + 100) / 2 = 5050.

Este curios de observat că această problemă se numește „gaussian” deoarece în începutul XVIII al secolului, celebrul german, încă la vârsta de doar 10 ani, a putut să o rezolve în minte în câteva secunde. Băiatul nu știa formula pentru suma unei progresii algebrice, dar a observat că, dacă adaugi perechi de numere situate la marginile șirului, obții întotdeauna același rezultat, adică 1 + 100 = 2 + 99. = 3 + 98 = ... și, deoarece aceste sume vor fi exact 50 (100 / 2), atunci pentru a obține răspunsul corect, este suficient să înmulțiți 50 cu 101.

Exemplul #6: suma termenilor de la n la m

Un alt exemplu tipic al sumei unei progresii aritmetice este următorul: având în vedere o serie de numere: 3, 7, 11, 15, ..., trebuie să aflați care va fi suma termenilor săi de la 8 la 14.

Problema este rezolvată în două moduri. Primul dintre ei implică găsirea de termeni necunoscuți de la 8 la 14 și apoi însumarea lor secvențială. Deoarece există puțini termeni, această metodă nu este suficient de laborioasă. Cu toate acestea, se propune rezolvarea acestei probleme prin a doua metodă, care este mai universală.

Ideea este de a obține o formulă pentru suma unei progresii algebrice între termenii m și n, unde n > m sunt numere întregi. Pentru ambele cazuri, scriem două expresii pentru suma:

  1. S m \u003d m * (a m + a 1) / 2.
  2. S n \u003d n * (a n + a 1) / 2.

Deoarece n > m, este evident că suma 2 o include pe prima. Ultima concluzie înseamnă că dacă luăm diferența dintre aceste sume și îi adăugăm termenul a m (în cazul luării diferenței, se scade din suma S n), atunci obținem răspunsul necesar la problemă. Avem: S mn \u003d S n - S m + a m \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m \u003d a 1 * (n - m) / 2 + a n * n / 2 + a m * (1- m / 2). Este necesar să se înlocuiască formule pentru a n și a m în această expresie. Atunci obținem: S mn = a 1 * (n - m) / 2 + n * (a 1 + (n - 1) * d) / 2 + (a 1 + (m - 1) * d) * (1 - m / 2) = a 1 * (n - m + 1) + d * n * (n - 1) / 2 + d * (3 * m - m 2 - 2) / 2.

Formula rezultată este oarecum greoaie, totuși, suma S mn depinde doar de n, m, a 1 și d. În cazul nostru, a 1 = 3, d = 4, n = 14, m = 8. Înlocuind aceste numere, obținem: S mn = 301.

După cum se poate observa din soluțiile de mai sus, toate problemele se bazează pe cunoașterea expresiei pentru al n-lea termen și a formulei pentru suma mulțimii primilor termeni. Înainte de a începe să rezolvați oricare dintre aceste probleme, este recomandat să citiți cu atenție condiția, să înțelegeți clar ce doriți să găsiți și abia apoi să continuați cu soluția.

Un alt sfat este să depuneți eforturi pentru simplitate, adică dacă puteți răspunde la întrebare fără a utiliza calcule matematice complexe, atunci trebuie să faceți exact asta, deoarece în acest caz probabilitatea de a face o greșeală este mai mică. De exemplu, în exemplul unei progresii aritmetice cu soluția nr. 6, se poate opri la formula S mn \u003d n * (a 1 + a n) / 2 - m * (a 1 + a m) / 2 + a m, și despărțit sarcină comunăîn subprobleme separate (în acest caz, găsiți mai întâi termenii a n și a m).

Dacă există îndoieli cu privire la rezultatul obținut, se recomandă verificarea acestuia, așa cum s-a făcut în unele dintre exemplele date. Cum să găsești o progresie aritmetică, am aflat. Odată ce îți dai seama, nu este atât de greu.

Publicații conexe