Изучаем биологию. Биологические науки и изучаемые ими аспекты

Анатомия изучает внутреннее строение организмов.
Морфология изучает внешнее строение организмов.
Физиология изучает работу организма.


Биохимия изучает химический состав живых организмов и химические реакции обмена веществ.

  • Хроматография – метод разделения смесей веществ на отдельные вещества.

Генетика изучает закономерности наследственности и изменчивости.

  • метод: изучение однояйцевых близнецов.
  • метод изучает родословные.
  • метод: скрещивание организмов и анализ потомства.
  • метод: изучение количества и строения хромосом.

Селекция занимается выведением новых сортов растений, пород животных и штаммов микроорганизмов.

Микробиология изучает микроорганизмы (бактерии и грибы).

Биотехнология использует биологические системы и процессы в сельском хозяйстве и промышленности.

  • Генная инженерия: пересадка гена в организм другого вида, например, пересадка человеческого гена в бактерию.
  • Клеточная инженерия:
    • пересадкой клеточных ядер;
    • выращивание нового организма из яйцеклетки с замененным ядром (клонирование животных);
    • выращивание целого организма из одной или нескольких соматических клеток;
    • выращивание тканей и органов «в пробирке» (культура клеток и тканей);
    • объединение клеток организмов разных видов (получение гибридных клеток).

Цитология (молекулярная биология) изучает строение и работу органоидов клетки.

  • Микроскопирование: разглядывание клетки в микроскоп.
  • Центрифугирование : разделение клетки на фракции по плотности.

Гистология изучает ткани.

Систематика (классификация, таксономия) изучает многообразие живых организмов и распределяет их по группам на основании эволюционного родства.

Эволюционная теория изучает закономерности возникновения приспособлений организмов к среде обитания.

Палеонтология изучает ископаемые остатки организмов.


Экология изучает взаимодействия живых организмов между собой и с окружающей их средой (в том числе загрязнённой).


Эмбриология изучает развитие организма животного от момента образования зиготы до рождения (начальные стадии онтогенеза).

Этология изучает поведение животных.


Общенаучные методы

  • эмпирические (практические)
    • наблюдение
    • мониторинг (непрерывное наблюдение и фиксация результатов)
    • описание, измерение
    • эксперимент
  • теоретические
    • сравнение, классификация
    • анализ, синтез
    • абстрагирование, обобщение
    • моделирование

Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. К эмпирическим методам изучения живой природы относят:
1) наблюдение
2) сравнение
3) абстрагирование
4) моделирование
5) эксперимент

Ответ


Выберите один, наиболее правильный вариант. Выращивание тканей вне организма - пример метода
1) культуры клеток
2) микроскопирования
3) центрифугирования
4) генной инженерии

Ответ


Прочитайте текст. Выберите три предложения, в которых даны описания особенностей анатомии древних людей неандертальцев. Запишите цифры, под которыми указаны выбранные утверждения.
(1) Неандертальцы жили 150тыс. лет назад, останки найдены в Германии в 1856 году. (2) Жили группами по 50-100 человек в пещерах, которые отвоевывали у медведей, львов, гиен. (3) Рост 155-160 см, объем мозга 1200 – 1400 см3, извилин мало. (4) Лицо широкое, скуластое. (5) Охотились коллективно, устраивая облавы на северных оленей, лошадей, слонов, медведей, зубров, шерстистых носорогов. (6) Ходили согнувшись, позвоночник без изгибов, мускулатура развита хорошо.

Ответ


Выберите один, наиболее правильный вариант. Влияние условий среды обитания на формирование признаков организма изучает наука
1) систематика
2) генетика
3) селекция
4) анатомия

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Гибридологический метод исследования используют.
1) эмбриологи
2) селекционеры
3) генетики
4) экологи
5) биохимики

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие методы исследования используют в цитологии?
1) центрифугирование
2) культура ткани
3) хроматография
4) генеалогический
5) гибридологический

Ответ


2. Выберите два верных ответа из пяти. Какие методы используют для изучения строения и функций клетки?
1) генная инженерия
2) микроскопирование
3) цитогенетический анализ
4) гибридизация
5) центрифугирование

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Изучение биологических объектов, процессов в различных специально созданных условиях осуществляют с помощью методов:
1) абстрагирования
2) клонирования
3) моделирования
4) обобщения
5) эксперимента

Ответ


1. Установите соответствие между достижениями и направлением биологии: 1) клеточная инженерия, 2) генная инженерия. Запишите цифры 1 и 2 в правильном порядке.
А) Клонирование
Б) Получение вакцин в культуре клеток
В) Отдаленная гибридизация растений
Г) Трансгенные организмы
Д) Создание банков генов
Е) Получение безвирусного посадочного материала

Ответ


2. Установите соответствие между характеристиками и методами биотехнологии: 1) генная инженерия, 2) клеточная инженерия. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) использование рекомбинантных плазмид
Б) гибридизация протопластов
В) трансплантация ядер
Г) выращивание культуры клеток
Д) соматическая гибридизация

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Процессы деления клеток изучают с помощью методов
1) дифференциального центрифугирования
2) культуры клеток
3) микроскопии
4) микрохирургии
5) фото- и киносъемки

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. В клеточной инженерии используют следующие методы:
1) клонирование
2) культура клеток и тканей
3) микробиологический синтез
4) пересадка природных генов в ДНК бактерий или грибов
5) центрифугирование

Ответ


Выберите два верных ответа. Микробиологическое производство как область биотехнологии занимается
1) созданием генетически модифицированных растений
2) изучением клеток бактерий
3) получением антибиотиков и витаминов
4) систематикой вирусов
5) синтезом кормового белка

Ответ


1. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Генная инженерия, в отличие от клеточной, включает исследования, связанные с
1) культивированием клеток высших организмов
2) гибридизацией соматических клеток
3) пересадкой генов
4) пересадкой ядра из одной клетки в другую
5) получение рекомбинантных (модифицированных) молекул РНК и ДНК

Ответ


2. Выберите два верных ответа. Какие приёмы используют в клеточной инженерии?
1) слияние соматических клеток
2) скрещивание организмов
3) пересадка хлоропластов из клетки в клетку
4) синтез гена инсулина в пробирке
5) получение рекомбинантной ДНК

Ответ


1. Выберите два верных ответа. Методы биотехнологии позволяют
1) изучить превращение веществ в процессе жизнедеятельности организмов
2) получить растения с генетически изменёнными признаками
3) обнаружить изменения, возникшие в организме в результате онтогенеза
4) изучить микроскопические структуры клеток
5) изменить наследственность микроорганизмов путём клеточной инженерии

Ответ


2. Ниже приведен перечень методов исследования. Все они, кроме двух, используются в биотехнологии. Найдите два метода, «выпадающих» из общего ряда, и запишите цифры, под которыми они указаны.
1) метод рекомбинантных плазмид
2) соматическая гибридизация

4) межвидовая гибридизация растений
5) испытание производителя по потомству

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания методов биотехнологии. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) эксперименты с изолированными клетками
2) перенос генов от одного организма к другому
3) выращивание клеток и тканей на питательных средах
4) получение гетерозисных растений
5) испытание производителя по потомству

Ответ


4. Выберите два верных результата из пяти и запишите цифры, под которыми они указаны. Вклад биотехнологии в медицину состоит в
1) использовании химического синтеза для получения лекарственных препаратов
2) создании лечебных сывороток на основе плазмы крови иммунизированных животных
3) синтезе гормонов человека в бактериальных клетках
4) изучении родословных человека для выявления наследственных заболеваний
5) культивировании штаммов бактерий и грибков для производства антибиотиков в промышленных масштабах

Ответ


Выберите один, наиболее правильный вариант. С открытием мейоза «гипотеза чистоты гамет» получила подтверждение
1) цитологическое
2) эмбриологическое
3) гистологическое
4) генетическое

Ответ


Выберите один, наиболее правильный вариант. Какой метод позволил получить гибрид табака и картофеля?
1) искусственный мутагенез
2) гетерозис у гибридов
3) гибридизация соматических клеток
4) массовый отбор потомства

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Организменный уровень организации живого изучают
1) биохимия
2) гистология
3) морфология
4) физиология
5) цитология

Ответ


Какие науки изучают живые системы на организменном уровне? Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.
1) анатомия
2) биоценология
3) физиология
4) молекулярная биология
5) эволюционное учение

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие биологические науки работают с объектами, относящимися к организменному уровню организации жизни?
1) генетика
2) биохимия
3) биология
4) цитология
5) анатомия

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие биологические науки изучают надорганизменные уровни организации жизни?
1) молекулярная биология
2) экология
3) биоценология
4) цитология
5) гистология

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие биологические науки работают с объектами, oтносящимися к клеточному уровню организации жизни?
1) цитология
2) палеонтология
3) эмбриология
4) генетика
5) микробиология

Ответ


Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Какие биологические науки работают с объектами, относящимися к популяционно-видовому уровню организации жизни?
1) генетика
2) экология
3) эмбриология
4) эволюционное учение
5) анатомия

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Объекты изучения каких из приведённых наук находятся на надорганизменном уровне организации живого.
1) молекулярная биология
2) экология
3) эмбриология
4) систематика
5) анатомия

Ответ


1. Какие примеры относят к биологическому эксперименту? Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны.
1) рассматривание под микроскопом клетки крови лягушки
2) слежение за миграцией косяка трески
3) изучение характера пульса после разных физических нагрузок
4) лабораторное исследование влияния гиподинамии на состояние здоровья
5) описание внешних признаков бобовых растений

Ответ


2. Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Что из нижеперечисленного можно установить экспериментальным методом?
1) сроки весенней линьки у белки
2) влияние удобрений на рост комнатного растения
3) сроки прилета или отлета перелетных птиц
4) высоту комнатного растения
5) условия прорастания семян

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. В каких из указанных научных исследований применялся экспериментальный метод?
1) исследование растительного мира тундры
2) опровержение теории самозарождения Л. Пастером
3) создание клеточной теории
4) создание модели молекулы ДНК
5) исследование процессов фотосинтеза

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Какие методы исследования позволили установить структуру молекулы ДНК?
1) микроскопия
2) наблюдение
3) рентгенологический
4) цитогенетический
5) моделирование

Ответ


Выберите два верных ответа из пяти и запишите в таблицу цифры, под которыми они указаны. Для определения количества эритроцитов в крови человека используют методы
1) гибридизации
2) измерения
3) эксперимента
4) клонирования
5) микроскопирования

Ответ


Установите последовательность этапов размножения растений с помощью культуры ткани. Запишите соответствующую последовательность цифр.
1) деление выделенных клеток и получение клеточной массы
2) отделение клеток образовательной ткани растения и помещение их в питательную среду
3) пересадка молодого растения в грунт
4) дифференцировка тканей и органов
5) обработка клеточной массы фитогормонами для дифференцировки клеток

Ответ



Выберите два верных ответа из пяти и запишите цифры, под которыми они указаны. Примеры каких научных методов иллюстрирует сюжет картины голландского художника Я. Стена «Пульс»?

Биология (греч. βίοσ (bios) - жизнь, λόγος (logos) - слово; наука) - совокупность наук о живой природе, о животных, населяющих Землю или уже вымерли, их функции, развитие особей и родов, наследственность, изменчивость, взаимные отношения, систематику, распространение на Земле, о связи между живыми существами и живых существ из неживой природой. Биология устанавливает общие закономерности, свойственные жизни во всех его проявлениях.

История становления и развития

Термин «биология» был введен в науку французским биологом Ж.-Б. Ламарком.

Человек издавна, с доисторических времен, жила рядом с живыми существами. Еще больше ознакомилась она с ними, когда начала культивировать растения и одомашнивать животных. По мере освоения растительного и животного мира развивались и углублялись знания человека. С этажных и часто неточных представлений о природе постепенно формировались более определенные и точные знания. Памятники древних культур - китайской, индийской, Асир-вавилонской, египетской, греческой - свидетельствуют о том, что еще задолго до начала нашей эры был накоплен значительный эмпирический материал в области биологии. Наряду с практическими вопросами, важными для сельского хозяйства и медицины, древние естествоиспытатели-мыслители (Гераклит, Демокрит, Гиппократ и др.) пытались решить и ряд общебиологических вопросов, в частности вопросов, касающихся происхождения и эволюции живых существ. Важное значение для развития биологии имели произведения Аристотеля (384-322 до н.э.).

Первые систематические попытки познания живой природы были сделаны античными врачами и философами (Гиппократ, Аристотель, Теофраст, Гален). Их работы, продолженные в эпоху Возрождения, положили начало ботанике и зоологии, а также анатомии и физиологии человека (Везалий и др.). В 17 - 18 веках в биологию проникают экспериментальные методы. На основе количественных измерений и применения законов гидравлики был открыт механизм кровообращения (Уильям Гарвей, 1628). Изобретение микроскопа раздвинул границы известного мира живых существ, углубило представление об их строении. Одно из главных достижений этой эпохи создания системы классификации растений и животных (Карл Линней, 1735). Вместе с тем преобладали умозрительные теории о развитии и свойства живых существ (самозарождения, преформации и др.).

В 19 веке в результате резкого увеличения количества биологических исследований (новые методы, экспедиции в тропические и малодоступные районы Земли и др.), накопления и дифференциации знаний сформировалось много специальных биологических наук. Так, в ботанике и зоологии появляются разделы, изучающие отдельные систематические группы, развиваются эмбриология, гистология, микробиология, палеонтология, биогеография и т.д. Среди достижений биологии клеточная теория (Т. Шванн, 1839), открытие закономерностей наследственности (Грегор Мендель, 1865). К фундаментальным изменениям в биологии привело эволюционное учение Чарльза Дарвина (1859).

Для биологии 20 века характерны две взаимосвязанные тенденции. С одной стороны, сформировалось представление о качественно различные уровни организации живой природы: молекулярный (молекулярная биология, биохимия и другие науки, которые объединяют понятием физико-химическая биология), клеточный (клеточная биология), уровень организмов (анатомия, физиология, эмбриология), популяционно -видовой (экология, биогеография). С другой стороны, стремление к целостному, синтетического познания живой природы привело к прогрессу наук, изучающих определенные свойства живой природы на всех структурных уровнях ее организации (генетика, систематика, эволюционное учение и т.д.). Поразительных успехов начиная с 1950-х годов достигла молекулярная биология, которая раскрыла химические основы наследственности (строение ДНК, генетический код, матричный принцип синтеза биополимеров). Учение о биосфере (В. И. Вернадский) раскрыло масштабы геохимической деятельности живых организмов, их неразрывную связь с неживой природой. Практическое значение биологических исследований и методов (в том числе генной инженерии, биотехнологии) для медицины, сельского хозяйства, промышленности, разумного использования природных ресурсов и охраны природы, а также проникновение в эти исследования идей и методов точных наук выдвинули биологию в середине 20 века на передовые рубеже естествознания.

Задача биологии и обзор основных проблем

Задачей биологии является всестороннее изучение всей совокупности организмов как современных, так и ископаемых. Число современных видов организмов достигает около 2 млн., в том числе более 1,5 млн. животных. Примерно столько же известно ископаемых видов. Биологи исследуют строение растений и животных, их жизненные функции, образ жизни и распространения на Земле, их историческое развитие и значение, пути использования и т.д. Эти исследования дают возможность все больше и рационально использовать в интересах человека полезные формы, все успешнее уничтожать вредные.

Вопрос об историческом развитии органического мира и происхождения человека являются одними из важнейших в современной биологии, они всегда стояли в центре борьбы между материализмом и идеализмом. Именно раздел биологии, охватывает эти вопросы, испытывал и испытывает сильных нападок со стороны реакционных сил в биологии.

Биология теперь - сложная система научных дисциплин, каждая из которых имеет свои задачи, свои методы и объекты исследования.

Весь мир организмов, в зависимости от степени их родства, делится на определенные группы: типы, классы, ряды, семьи, роды, виды. Распределение организмов по группам, или их классификацию, осуществляет систематика. Основоположником научной систематики был К. Линней.

Строение организмов и ее изменения в индивидуальном и историческом развитии исследует морфология, которая является базой для развития других биологических наук. Для изучения внутреннего строения организмов морфология пользуется методом сечений и срезов, поэтому этот ее раздел известен еще под названием анатомии. Применение сравнительного анализа внутренних структур позволило сделать ряд важных обобщений. Без сравнительной анатомии невозможно решение такой важной проблемы, как эволюция органического мира.

Микроскопическое исследование тончайшей строения тела организмов, недоступной для невооруженного человеческого глаза, осуществляет наука о тканях - гистология. Параллельно со сравнительной анатомией развилась сравнительная гистология. Микроскопическое исследование строения клеток привело к развитию клеточной биологии - науки о строении, химическом составе, физиологические свойства и развитие этой основной структурной единицы живых существ.

Морфологические науки тесно переплетаются с физиологией, изучающей жизненные функции организмов, т.е. процессы их жизнедеятельности (движение, питание, дыхание, кровообращение, выделение, передачу нервного возбуждения и т.п.). С физиологией близко родственная биохимия, или физиологическая химия, которая исследует химические процессы, лежащие в основе обмена веществ, проводит химический анализ тканей и различных выделений организма.

Взаимоотношения и взаимодействие организма и внешней среды изучает экология. Важным ее разделом является ценология, изучающая биоценозы. Из данных экологии и ценология исходит в своих выводах биогеография, которая делится на фитогеография (география растений) и зоогеографии (география животных).

Индивидуальное развитие организмов (онтогенез) делится на два этапа - эмбриональный (зародышевый) и постэмбриональный (послезародышевый). Закономерности эмбрионального развития изучает эмбриология, которая, естественно, делится на эмбриологию растений и эмбриологии животных и человека. Вопрос наследственности и изменчивости организмов исследует генетика.

Эволюционное учение, или дарвинизм, охватывает как общие закономерности эволюции организмов, так и факторы исторического (филогенетического) и индивидуального развития животных и растений. Конкретные пути исторического развития, родство различных систематических групп организмов-их филогению изучает филогенетика. Очень важное значение для выявления родства организмов имеет палеонтология, которая исследует ископаемые растения (палеоботаники) и ископаемых животных (палеозоологии) и их развитие на протяжении всех геологических эпох. Именно она позволял на основании документальных данных - окаменевших остатков ископаемых организмов - воссоздать реальную картину эволюции органического мира, последовательные этапы развития жизни на Земле.

При анализе сложных биологических явлений необходимо рассматривать их в тесной связи с процессами, происходящими в неживой природе. Поэтому Б. широко пользуется услугами физики, химии, геологии и др. естественных наук. Изучение физических закономерностей в биологических явлениях, в частности влияния радиоактивных веществ на организмы, привело к возникновению новых разделов Б. - биофизики и радиобиологии.

Биологические дисциплины

Анатомия - сборная группа разделов биологии, изучающих структуру организмов или их частей на уровне выше клеточного.
Альгология - наука о водорослях, раздел ботаники.
Антропология - биологическая наука, изучающая телесную природу человека, его происхождении и дальнейшее развитие.
Бактериология - раздел микробиологии, изучающий строение, жизнь и свойства бактерий.
Биогеография - наука, изучающая закономерности географического распространения животных и растений и их группировок, а также характер фауны и флоры отдельных территорий.
Биогеоценологии - научная дисциплина, которая исследуются строение и функционирование комплексов живой и неживой природы в биогеоценозов.
Биоинженерия - отрасль биологии и медицины, занимающаяся сознательным внесением изменений в живые организмы для управления их свойствами.
Биоинформатика - область вычислительной биологии, применяет машинные алгоритмы и статистические методы для анализа больших наборов биологических данных
Биология океана - наука, раздел биологии и океанологии, изучающий жизнь морских организмов (биоты) и их экологические взаимодействия.
Биология развития - раздел биологии, изучающий причинные механизмы и движущие силы индивидуального развития (онтогенеза) организмов животных и растений.
Биометрия - совокупность методов математической обработки данных, полученных при измерении тела или отдельных органов организмов.
Бионика - использование биологических методов и структур для разработки инженерных решений и технологических методов.
Биосемиотика - наука, исследующая свойства знаков и знаковых систем (знаковые процессы) в живых системах.
Биоспелеология - раздел биологии, занимающийся изучением организмов, обитающих в пещерах.
Биофизика - область науки, изучающая физические и физико-химические явления зарождения, формирования, життедияльнисть, воспроизведение жизни на всех уровнях, начиная с молекул, клеток, органов органов и тканей, заканчивая организмами и биосферы в целом.
Биохимия - наука о химическом составе организмов и их составных частей и о химических процессах, протекающих в организмах.
Биомеханика - наука, которая изучает на основе идей и методов механики свойства биологических объектов
Биоценологии - раздел экологии, изучающий биоценозы, их возникновение, происхождение и развитие, строение и распределение в пространстве и времени, взаимоотношение с окружающей средой и между собой как самих биоценозов, так и отдельных их компонентов.
Ботаника - раздел биологии, изучающий растения, грибы и водоросли.
Ботаническая география - наука о закономерностях географического распространения растительного покрова в связи с рельефом, климатом, почвами и другими составляющими ландшафта.
Бриология - наука, изучающая мохообразные (мхи и Печеночники)
Вирусология - область науки, изучающая свойства вирусов человека, животных, растений, бактерий, грибов
Генетика - это наука о генах, наследственность и вариативность организмов.
Гидробиология - комплексная биологическая наука, изучающая население гидросферы.
Гистология - раздел биологии, изучающий строение тканей живых организмов.
Дендрология - раздел ботаники, изучающий древесные растения (деревья, кустарники и кустарники).
Эволюционная биология - отрасль биологии, изучающий происхождение видов, их изменения, разделения и возникновения биоразнообразия.
Экология - один из разделов биологии, исследующий взаимоотношения между биотическими и социальной целостности и их средой.
Эмбриология - раздел биологии развития (онтогенеза), изучающий эмбриональный период онтогенеза, т.е. эмбрионы различных видов животных, их анатомию и физиологию, закономерности их роста, развития и созревания, патологии и аномалии эмбрионов.
Эндокринология - наука о строении и функции желез внутренней секреции (эндокринных желез); по веществам, которыми производятся (гормоны) и их воздействие на организм человека (или животного)
Энтомология - научная дисциплина, изучающая насекомых. Иногда это определение приобретает более широкий смысл и включает в себя также изучение других наземных членистоногих, таких как пауки, скорпионы и клещи.
Этология - полевая дисциплина зоологии, изучающий поведение животных.
Зоология - это биологическая дисциплина, изучающая животных и их взаимосвязи с окружающей средой.
Иммунология - область биомедицинских наук, покрывающий изучения всех аспектов иммунной системы всех организмов
Ихтиология - наука о рыбах.
Клеточная биология - раздел биологии, изучающий структурно-функциональной организации прокариотических и эукариотических клеток.
Космическая биология - биологическая наука, или раздел биологии, изучающий возможность существования живых организмов в космосе и на других планетах кроме Земли.
Ксенобиология - наука о формах жизни внеземного происхождения.
Микология - наука, исследующая грибы как особую группу организмов, составляющих самостоятельное царство живой природы.
Микробиология - раздел биологии, занимающаяся изучением микроорганизмов, главным образом вирусов, бактерий, грибков, одноклеточных водорослей и простейших.
Молекулярная биология - область науки, изучающая биологические процессы на уровне биополимеров - нуклеиновых кислот и белков и их надмолекулярных структур.
Морфология - форма и структура организма.
Нейробиология - наука, изучающая устройство, функционирование, развитие, генетику, биохимию, физиологию и патологию нервной системы.
Орнитология - наука о птицах, один из разделов зоологии.
Палеонтология - наука, изучающая вымершие организмы, пытающаяся реконструировать по найденным останкам их внешний вид.
Систематика - наука о многообразии живых организмов, задачей которой является описание и приведение различных существующих и вымерших видов, их распределение.
Системная биология - Есть междисциплинарной наукой о жизни.
Синтетическая биология - наука, целью которой является создание и изучение биологических систем, не существовавших ранее.
Териология - наука о млекопитающих, один из разделов зоологии
Математическая и теоретическая биология - наука, изучающая закономерности функционирования живого, пытается формально их описать.
Токсикология - наука, изучающая ядовитые, токсичные и вредные вещества, потенциальную опасность их воздействия на организмы и экосистемы.
Физиология растений - наука, изучающая все процессы деятельности и функции растительного организма, их взаимосвязи и связи с окружающей обстановкой.
Физиология животных и человека - область науки, изучающая механизмы и закономерности всех проявлений жизнедеятельности организма, его органов, тканей, клеток и сублитинних образований, используя для изучения и объяснения этих проявлений методы и понятия физики, химии, математики и кибернетики.
Физиология грибов - наука, изучающая процессы жизнедеятельности грибов.
Исследования биологии

Цитология

Разрез животной клетки
Цитология (греч. κύτος - «вместилище», здесь: «клетка» и λόγος - «учение», «наука») - раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Генетика

Генетика (греч. Γενητως - что происходит от кого) - наука о законах и механизмах наследственности и изменчивости. В зависимости от объекта исследования классифицируют генетику растений, животных, микроорганизмов, человека и другие, в зависимости от используемых методов - наука о генетике, экологическую генетику и другие. Идеи и методы генетики играют важную роль в медицине, сельском хозяйстве, микробиологической промышленности, а также в генетической инженерии.

Генетика как наука появилась не так давно! В 1865 году Грегор Мендель опубликовал доклад «Опыты над растительными гибридами», с этого и принято считать начало науки генетики, а Грегора Менделя за это прозвали «Отцом генетики».

Экология

Экология (греч. Οικος - дом, жилище, хозяйство, жилье, местожительства, родина и λόγος - понятие, учение, наука) - наука об отношениях живых организмов и их сообществ между собой и с окружающей средой. Термин впервые предложил немецкий биолог Эрнст Геккель в 1866 году в книге «Общая морфология организмов».

Взаимный симбиоз рыбы из рода Amphiprion, живущих среди щупалец тропических актиний. Территориальной рыбы защищает от анемоны, питающиеся актиний, и в свою очередь, язвительные щупальца анемоны защищает рыбы-клоуна от хищников.
Экология как наука стала очень популярна в наше время, в связи с ухудшением окружающей среды.

Объекты исследования экологии - в основном, системы выше уровня отдельных организмов: популяции, биоценозы, экосистемы, а также вся биосфера. Предмет изучения - организация и функционирование таких систем.

Главная задача прикладной экологии - разработка принципов рационального использования природных ресурсов на основе сформулированных общих закономерностей организации жизни.

Методы исследований в экологии подразделяются на полевые, исторические, экспериментальные, метод сравнения и метод моделирования.

Полевые методы представляют собой наблюдения за функционированием организмов в их естественной среде обитания.

Экспериментальные методы включают в себя варьирования различных факторов, влияющих на организмы, по выработанной программе в стационарных лабораторных условиях.

Методы моделирования позволяют прогнозировать развитие различных процессов взаимодействия живых систем между собой и с окружающей их средой.

Метод сравнения позволяет выявить общие закономерности в строении и жизнедеятельности различных организмов.

Исторический метод допоматае на основе данных о современном органическом мире и его прошлое, познать процессы развития живой природы.

Биологическая классификация

Биологическая классификация - научная дисциплина, в задачи которой входит разработка принципов классификации живых организмов и практическое применение этих принципов к построению системы. Под классификацией здесь понимается описание и размещение в системе всех существующих и вымерших организмов.

Биологическая безопасность

Биологическая безопасность - это сохранение функционирования живых систем, их целостности, биологических функций, взаимосвязей с другими системами, предотвращение широкомасштабной потери биологической целостности, которая может иметь место в результате интродукции видов в экосистемы, загрязнение окружающей среды (воды, почвы, воздуха) и т.д. ;

Науки изучающие биологию

Акарология - наука изучающая клещей.

Анатомия - раздел биологии и конкретно морфологии, изучающий строение тела организмов и их частей на уровне выше клеточного.

Альголо́гия - раздел биологии, изучающий водоросли. Ранее все водоросли относили к растениям, а потому альгологию рассматривали как раздел ботаники.

Антропология - биологическая наука о происхождении и эволюции физической организации человека и человеческих рас.

Арахналогия наука изучающая пауков.

Бактериология (от греч. bakteria- палочка и logos-слово), наука о мельчайших, невидимых простым глазом.

Биогеография – это наука о географическом распространении и размещении на Земле организмов и их сообществ.

Биоинформа́тика - совокупность методов и подходов, включающих в себя: математические методы компьютерного анализа в сравнительной геномике (геномнаябиоинформатика).

Биометрия предполагает систему распознавания людей по одной или более физических или поведенческих черт. В области информационных технологий биометрические данные используются в качестве формы управления идентификаторами доступа и контроля доступа.

Био́ника (от др.-греч. βίον - живущее) - прикладная наука о применении в технических устройствах и системах принципов организации, свойств, функций и структур живой природы, то есть формы живого в природе и их промышленные аналоги.

Биоспелеология, спелеобиология - раздел биологии, занимающийся изучением организмов, обитающих в пещерах.

Биофизика - это наука о физических процессах, протекающих в биологических системах разного уровня организации, и о влиянии на биологические объекты различных физических факторов. Биофизика призвана выявлять связи между физическими механизмами, лежащими в основе организации живых объектов, и биологическими особенностями их жизнедеятельности.

Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия) - наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности.

Ботаника - наука о растениях.

Биомеха́ника - раздел естественных наук, изучающий на основе моделей и методов механики механические свойства живых тканей, отдельных органов и систем, или организма в целом, а также происходящие в них механические явления.

Биоценология (от биоценоз и …логия), центральный раздел экологии, изучающий закономерности жизни организмов в биоценозах, их популяционную структуру, потоки энергии и круговорот веществ.

Бриология (греч., от bryon - мох, и logos - слово) наука изучающая мхи.

Вирусология - раздел микробиологии, изучающий вирусы (от латинского слова virus - яд).

Гельмитология - наука изучающая глисты.

Гене́тика - наука о закономерностях наследственности и изменчивости.

Геоботаника - раздел биологии на стыке ботаники, географии и экологии. Это наука о растительности Земли, о совокупности растительных сообществ (фитоценозов), их составе, структуре.

Герпетология. (от греч. herpeton - пресмыкающееся и...логия), раздел зоологии, изучающий пресмыкающихся и земноводных.

Гидробиология - наука о жизни и биологических процессах в воде, одна из биологических дисциплин.

Гистоло́гия - раздел биологии, изучающий строение, жизнедеятельность и развитие тканей живых организмов.

Дендрология" - раздел ботаники, предметом изучения которого являются древесные растения: помимо деревьев, это также кустарники, полукустарники, кустарнички, древовидные лианы, а также стелющееся древесные растения.

Зоология (от др.-греч. ζῷον - животное + λόγος - учение) - биологическая наука, изучающая представителей царства животных. Зоология изучает физиологию, анатомию, эмбриологию, экологию, филогению животных.

Ихтиология (от греч. ichthýs - рыба и...Логия) раздел зоологии позвоночных, изучающий рыб, их строение, функции их органов, образ жизни на всех стадиях развития, распространение рыб во времени и пространстве, их систематику, эволюцию.

Колеоптероло́гия (от Coleoptera, Жуки, и греч. -λογία, …логия) - раздел энтомологии, изучающий жуков (насекомых из отряда жёсткокрылых, лат. Coleoptera).

Ксенобиология - подраздел синтетической биологии, изучающий создание и управление биологическими устройствами и системами.

Лепидоптерология - раздел энтомологии, изучающий представителей отряда Чешуекрылые насекомые (бабочки).

Лихеноло́гия (от греч. λειχήν - лишай, лишайник) - наука о лишайниках, раздел ботаники.

Миколо́гия (от др.-греч. μύκης - гриб) - раздел биологии, наука о грибах.

Мирмеколо́гия (от др.-греч. μύρμηξ «муравей» и λόγος «учение») - наука, изучающая муравьёв.

Палеонтоло́гия (от др.-греч. παλαιοντολογία) - наука об организмах, существовавших в прошлые геологические периоды и сохранившихся в виде ископаемых останков, а также следов их жизнедеятельности.

Палиноло́гия - комплекс отраслей наук (в первую очередь, ботаники), связанных с изучением пыльцевых зёрен и спор.

Радиационная биология или радиобиология - наука, изучающая действие ионизирующих и неионизирующих излучений на биологические объекты.

Систематика в биологии - это наука, которая классифицирует организмы на основе их внешнего сходства и родства.

Спонгиология наука о губках.

Таксоно́мия - учение о принципах и практике классификации и систематизации.

Териоло́гия - раздел зоологии, изучающий млекопитающих.

Токсиколо́гия - наука, изучающая ядовитые (токсичные) вещества, потенциальную опасность их воздействия на организмы и экосистемы, механизмы токсического действия, а также методы диагностики.

Феноло́гия (от греч. φαινόμενα - явления) - система знаний и совокупность сведений о сезонных явлениях природы, сроках их наступления и причинах, определяющих эти сроки.

Физиоло́гия (от греч. φύσις - природа и λόγος - знание) - наука о сущности живого, жизни в норме и при патологиях, то есть о закономерностях функционирования и регуляции биологических систем разного уровня организации.

Фитопатология (фито - растение и патология) - наука о болезнях растений, вызванных патогенами (инфекционные болезни) и экологическими факторами (физиологические факторы).

Цитоло́гия (греч. κύτος «клетка» и λόγος - «учение», «наука») - раздел биологии, изучающий живые клетки, их органоиды, их строение, функционирование, процессы клеточного размножения, старения и смерти.

Биологическая эволю́ция (от лат. evolutio - «развёртывание») - естественный процесс развития живой природы, сопровождающийся изменением генетического состава популяций, формированием адаптаций.

Эмбриология - это наука, изучающая развитие зародыша: эмбриогенез.

Эндокриноло́гия - наука о строении и функции желез внутренней секреции (эндокринных желез), вырабатываемых ими продуктах (гормонах), о путях их образования и действия на организм животных и человека; а также о заболеваниях.

Энтомология - раздел зоологии, изучающий насекомых.

Этоло́гия - полевая дисциплина зоологии, изучающая генетически обусловленное поведение (инстинкты) животных, в том числе людей.

Биология – совокупность или система наук о живых системах. Понятие «живые системы» здесь важно подчеркнуть, поскольку жизнь не существует сама по себе, а является свойством определенных систем.

Классификация наук - многоступенчатое, разветвленное деление наук, использующее на разных этапах деления разные основания.

Предмет изучения биологии – все проявления жизни, а именно:

· строение и функции живых существ и их природных сообществ;

· распространение, происхождение и развитие новых существ и их сообществ;

· связи живых существ и их сообществ друг с другом и с неживой природой.

Биология является системой наук, которые могут быть классифицированы различным образом.

1. По предмету изучения: ботаника, зоология, микробиология и т.д.

2. По общим свойствам живых организмов:

· генетика (закономерности наследственности)

· биохимия (превращения вещества и энергии)

· экология (взаимоотношения живых существ и их природных сообществ с окружающей средой) и т.п.

3. По уровню организации живой материи, на котором рассматриваются живые системы:

· молекулярная биология;

· цитология;

· гистология и т.п.

Приведенные классификации, разумеется, не носят абсолютного характера. Так, например, исследование клетки (цитология) в настоящее время немыслимо без изучения биохимии клетки.

Можно также говорить о трех магистральных направлениях биологии или, по образному выражению трех образах биологии:

1. Традиционная или натуралистическая биология. Ее объектом изучения является живая природа в ее естественном состоянии и нерасчлененной целостности – «Храм природы», как называл ее Эразма Дарвина. Истоки традиционной биологии восходят к средним векам, хотя вполне естественно здесь вспомнить и работы Аристотеля, который рассматривал вопросы биологии, биологического прогресса, пытался систематизировать живые организма («лестница Природы»). Оформление биологии в самостоятельную науку – натуралистическую биологию приходится на 18-19 века. Первый этап натуралистической биологии ознаменовался созданием классификаций животных и растений. К ним относятся известная классификация К. Линнея (1707 – 1778), являющаяся традиционной систематизацией растительного мира, а также классификация Ж.-Б. Ламарка, применившего эволюционный подход к классифицированию растений и животных. Традиционная биология не утратила своего значения и в настоящее время. В качестве доказательства приводят положение экологии среди биологических наук а также во всем естествознании. Ее позиции и авторитет в настоящее время чрезвычайно высоки, а она в первую очередь основывается в принципах традиционной биологии, поскольку исследует взаимоотношений организмов между собой (биотические факторы) и со средой обитания (абиотические факторы).



2. Функционально-химическая биология, отражающая сближение биологии с точными физико-химическими науками. Особенность физико-химической биологии – широкое использование экспериментальных методов, которые позволяют исследовать живую материю на субмикроскопическом, надмолекулярном и молекулярном уровнях. Одним из важнейших разделов физико-химической биологии является молекулярная биология – наука изучающая структуру макромолекул, лежащих в основе живого вещества. Биологию нередко называют одной из лидирующих наук 21-го века.

К важнейшим экспериментальным методам, использующимся в физико-химической биологии, относятся метод меченых (радиоактивных) атомов, метолы рентгеноструктурного анализа и электронной микроскопии, методы фракционирования (например, разделение различных аминокислот), использование ЭВМ и др.

3. Эволюционная биология. Это направление биологии изучает закономерности исторического развития организмов. В настоящее время концепция эволюционизма стала, фактически, платформой, на которой происходит синтез разнородного и специализированного знания. В основе современной эволюционной биологии лежит теория Дарвина. Интересно и то, что Дарвину в свое время удалось выявить такие факты и закономерности, которые имеют универсальное значение, т.е. теория созданная им, приложима к объяснению явлений, происходящих не только в живой, но и неживой природе. В настоящее время эволюционный подход взят на вооружение всем естествознанием. Вместе с тем, эволюционная биология – самостоятельная область знания, с собственными проблемами, методами исследования и перспективой развития.

В настоящее время предпринимаются попытки синтеза этих трех направлений («образов») биологии и оформления самостоятельной дисциплины – теоретической биологии.

4. Теоретическая биология. Целью теоретической биологии является познание самых фундаментальных и общих принципов, законов и свойств, лежащих в основе живой материи. Здесь разные исследования выдвигают различные мнения по вопросу о том, что должно стать фундаментом теоретической биологии.

Система биологических наук чрезвычайно многопланова, что обусловлено как многообразием проявлений жизни, так и разнообразием форм, методов и целей исследования живых объектов, изучением живого на разных уровнях его организации. Всё это определяет условность любой системы биологических наук. Одними из первых в Биологии сложились науки о животных - зоология и растениях - ботаника, а также анатомия и физиология человека - основа медицины. Другие крупные разделы Биологии выделяемые по объектам исследования, - микробиология - наука о микроорганизмах, гидробиология - наука об организмах, населяющих водную среду, и т.д. Внутри Биологии сформировались более узкие дисциплины; в пределах зоологии - изучающие млекопитающих - териология, птиц - орнитология, пресмыкающихся и земноводных - герпетология, рыб и рыбообразных - ихтиология, насекомых - энтомология, клещей - акарология, моллюсков - малакология, простейших - протозоология;внутри ботаники - изучающие водоросли - альгология, грибы - микология, лишайники - лихенология, мхи - бриология, деревья и кустарники - дендрология и т.д. Подразделение дисциплин иногда идёт ещё глубже. Многообразие организмов и распределение их по группам изучают систематика животных и систематика растений. Биологии можно подразделить на неонтологию, изучающую современный органический мир, и палеонтологию - науку о вымерших животных (палеозоология) и растениях (палеоботаника).

Другой аспект классификации биологических дисциплин - по исследуемым свойствам и проявлениям живого. Форму и строение организмов изучают морфологические дисциплины; образ жизни животных и растений и их взаимоотношения с условиями внешней среды - экология; изучение разных функций живых существ - область исследований физиологии животных и физиологии растений; предмет исследований генетики - закономерности наследственности и изменчивости; этологии - закономерности поведения животных; закономерности индивидуального развития изучает эмбриология или в более широком современном понимании - биология развития;закономерности исторического развития - эволюционное учение. Каждая из названных дисциплин делится на ряд более частных (например, морфология - на функциональную, сравнительную и др.). Одновременно происходит взаимопроникновение и слияние разных отраслей Биологии с образованием сложных сочетаний, например гисто-, цито- или эмбриофизиология, цитогенетика, эволюционная и экологическая генетика и др. Анатомия изучает строение органов и их систем макроскопически; микроструктуру тканей изучает гистология, клеток - цитология, а строение клеточного ядра - кариология. В то же время и гистология, и цитология, и кариология исследуют не только строение соответствующих структур, но и их функции и биохимические свойства.

Можно выделить в Биологии дисциплины, связанные с использованием определённых. методов исследования, например биохимию, изучающую основные жизненные процессы химическими методами и подразделяемую на ряд разделов (биохимия животных, растений и т.п.), биофизику, вскрывающую значение физических закономерностей в процессах жизнедеятельности и также подразделяемую на ряд отраслей. Биохимическое и биофизическое направления исследований зачастую тесно переплетаются как между собой (например, в радиационной биохимии), так и с другими биологическими дисциплинами (например, в радиобиологии). Важное значение имеет биометрия, в основе которой лежат математическая обработка биологических данных с целью вскрытия зависимостей, ускользающих при описании единичных явлений и процессов, планирование эксперимента и др.; теоретическая и математическая Биологии позволяют, применяя логические построения и математические методы, устанавливать более общие биологические закономерности.

Биология — наука о жизни


Биология — наука о жизни, включающая все знания о природе, структуре, функциях и поведении живых существ. Биология имеет дело не только с великим множеством форм различных организмов, но также с их эволюцией, развитием и с теми отношениями, которые складываются между ними и окружающей средой.


Основными структурными элементами, из которых состоят тела живых существ, являются клетки. Их строение, состав и функции изучает цитология. Другая биологическая наука, гистология, имеет дело со свойствами и структурой тканей, т.е. групп однотипных клеток, выполняющих в организме сходную функцию. Механизмы, посредством которых признаки, свойственные особям одного поколения, передаются следующим поколениям, исследует генетика. Классификацией животных и растений и установлением их родственных связей занимается таксономия, а изучением ископаемых остатков живых существ — палеонтология. Взаимоотношения организмов с окружающей средой составляют предмет экологии. Новейшие физические и химические методы исследования позволяют количественно изучать молекулярные структуры и явления, лежащие в основе всех биологических процессов. Данное направление, затрагивающее сразу несколько биологических дисциплин, называют молекулярной биологией.


Биологические концепции

Вплоть до начала 20 в. биологи были убеждены в том, что все живое принципиально отличается от неживого и в этом отличии есть какая-то тайна. В настоящее время благодаря значительно возросшему объему знаний в области химии и физики живой материи стало ясно, что жизнь может быть объяснена в обычных понятиях химии и физики. Ниже кратко излагаются основные концепции современной биологии, касающиеся самого феномена жизни.

Биогенез. Все живые организмы происходят только от других живых организмов, и из этого правила нет исключений. Не совсем ясно, можно ли считать живыми субмикроскопические фильтрующиеся вирусы, но нет сомнений в том, что появление их в большом количестве в среде возможно только за счет размножения тех вирусов, которые уже попали туда раньше. Из невирусного вещества вирусы не возникают.

Клеточная теория. Одно из наиболее фундаментальных обобщений современной биологии — это клеточная теория, согласно которой все живые существа, включая растения и животных, состоят из клеток и продуктов выделения клеток, а новые клетки образуются путем деления существующих. Все клетки демонстрируют также сходство в основных компонентах химического состава и в основных метаболических реакциях, а активность всего организма представляет собой сумму индивидуальных активностей составляющих этот организм клеток и результатов их взаимодействия.


Генетические механизмы и эволюция.

Генетическая теория гласит, что признаки особей каждого поколения передаются следующему поколению через единицы наследственности, называемые генами. Крупные сложные молекулы ДНК состоят из четырех типов субъединиц, называемых нуклеотидами, и имеют структуру двойной спирали. Информация, содержащаяся в каждом гене, закодирована особым порядком расположения этих субъединиц. Поскольку каждый ген состоит примерно из 10 000 нуклеотидов, выстроенных в определенной последовательности, существует великое множество комбинаций нуклеотидов, а соответственно и множество различных последовательностей, являющихся единицами генетической информации.

Определение последовательности нуклеотидов, образующих определенный ген, стало теперь не только возможным, но даже довольно обычным делом. Более того, ген можно синтезировать, а затем клонировать, получив таким образом миллионы копий. Если какое-то заболевание человека вызвано мутацией гена, который в результате не функционирует надлежащим образом, в клетку может быть введен нормальный синтезированный ген, и он будет выполнять необходимую функцию. Эта процедура называется генной терапией.

Грандиозный проект "Геном человека" призван выяснить нуклеотидные последовательности, образующие все гены человеческого генома. Одно из важнейших обобщений современной биологии, формулируемое иногда как правило "один ген — один фермент — одна метаболическая реакция", было выдвинуто в 1941 американскими генетиками Дж.Бидлом и Э.Тейтемом. Согласно этой гипотезе, любая биохимическая реакция — как в развивающемся, так и в зрелом организме — контролируется определенным ферментом, а фермент этот в свою очередь контролируется одним геном. Информация, заложенная в каждом гене, передается от одного поколения другому специальным генетическим кодом, который определяется линейной последовательностью нуклеотидов. При образовании новых клеток каждый ген реплицируется, и в процессе деления каждая из дочерних клеток получает точную копию всего кода. В каждом поколении клеток происходит транскрипция генетического кода, что позволяет использовать наследственную информацию для регуляции синтеза специфических ферментов и других белков, существующих в клетках.

В 1953 американский биолог Дж. Уотсон и британский биохимик Ф.Крик сформулировали теорию, объясняющую, каким образом структура молекулы ДНК обеспечивает основные свойства генов — способность к репликации, к передаче информации и мутированию. На основании этой теории оказалось возможным сделать определенные предсказания о генетической регуляции синтеза белка и подтвердить их экспериментально.

Развитие с середины 1970-х годов генной инженерии, т.е. технологии получения рекомбинантных ДНК, значительно изменило характер исследований, проводимых в области генетики, биологии развития и эволюции. Разработка методов клонирования ДНК и проведения полимеразной цепной реакции позволяют получать в достаточном количестве необходимый генетический материал, включая рекомбинантные (гибридные) ДНК. Эти методы используются для выяснения тонкой структуры генетического аппарата и отношений между генами и их специфическими продуктами — полипептидами. Вводя в клетки рекомбинантную ДНК, удалось получить штаммы бактерий, способные синтезировать важные для медицины белки, например человеческий инсулин, гормон роста человека и многие другие соединения.

Значительный прогресс был достигнут в области изучения генетики человека. В частности, проведены исследования таких наследственных болезней, как серповидноклеточная анемия и муковисцидоз. Изучение раковых клеток привело к открытию онкогенов, превращающих нормальные клетки в злокачественные. Исследования, проводимые на вирусах, бактериях, дрожжах, плодовых мушках и мышах, позволили получить обширную информацию, касающуюся молекулярных механизмов наследственности. Теперь гены одних организмов могут быть перенесены в клетки других высокоразвитых организмов, например мышей, которые после такой процедуры называются трансгенными. Чтобы осуществить операцию по внедрению чужеродных генов в генетический аппарат млекопитающих, разработан целый ряд специальных методов. Одно из наиболее удивительных открытий в генетике — это обнаружение двух типов входящих в состав генов полинуклеотидов: интронов и экзонов. Генетическая информация кодируется и передается только экзонами, функции же интронов до конца не выяснены.


Витамины и коферменты.

Открытие этих веществ, которые не являются солями, белками, жирами или углеводами, но вместе с тем необходимы для полноценного питания, принадлежит американскому биохимику польского происхождения К.Функу. С 1912, когда Функ обнаружил витамины, началось интенсивное исследование их роли в метаболизме и выяснение того, почему в пищевом рационе одних организмов должны обязательно присутствовать определенные витамины, а в рационе других их может и не быть. Сейчас твердо установлено, что соединения, которые мы относим к витаминам, необходимы для нормального метаболизма всех живых существ, включая бактерии, зеленые растения и животных, однако, если некоторые организмы способны синтезировать эти соединения сами, другие должны получать их с пищей в готовом виде. Для многих витаминов в настоящее время уже выяснена их специфическая роль в метаболизме. Во всех случаях они функционируют как часть большой молекулы вещества, названного коферментом. Кофермент служит своего рода партнером фермента и субстратом для осуществления некоторых реакций. Авитаминоз, возникающий при недостаточности того или иного витамина, есть следствие нарушений в метаболизме, вызванных нехваткой кофермента.

Гормоны. Термин «гормон» был предложен в 1905 английским физиологом Э. Старлингом, который определил его как «любое вещество, в норме выделяемое клетками в какой-то одной части тела и переносимое кровью в другие части тела, где оно проявляет свое действие во благо всего организма». Можно сказать, что эндокринология (изучение гормонов) началась с 1849, когда немецкий физиолог А.Бертольд осуществил пересадку семенников от одной птицы к другой и предположил, что эти мужские половые железы выделяют в кровь какое-то вещество, определяющее развитие вторичных половых признаков. Само же это вещество — тестостерон — было выделено в чистом виде и описано только в 1935. Животные (как позвоночные, так и беспозвоночные) и растения вырабатывают большое число разных гормонов. Все гормоны образуются в каком-то небольшом участке организма, а потом переносятся в другие его части, где, присутствуя в очень низких концентрациях, оказывают исключительно важное регуляторное и координирующее действие на активность клеток. Таким образом, основная роль гормонов — это химическая координация, дополняющая координацию, осуществляемую нервной системой.


Экология.

Согласно одной из важнейших обобщающих концепций современной биологии, все живые организмы, обитающие в определенном месте, тесно взаимодействуют друг с другом и с окружающей средой. Определенные виды растений и животных распределены в пространстве не случайным образом, а образуют взаимозависимые сообщества, состоящие из продуцентов, консументов и редуцентов и связанные с определенными неживыми компонентами среды. Подобные сообщества могут быть выявлены и охарактеризованы по доминирующим видам; чаще всего это виды растений, дающие пищу и укрытие другим организмам. Экология призвана ответить на вопросы — почему те или иные виды растений и животных образуют определенное сообщество, как они взаимодействуют между собой и как влияет на них человеческая деятельность.

Особенности живых организмов. Живые организмы не содержат какого-либо особого химического элемента, которого не было бы в неживой природе. Наоборот, основные составляющие их элементы — углерод, водород, кислород и азот — довольно широко распространены на Земле. В очень небольших количествах в составе живых организмов присутствует, кроме того, множество других химических элементов. Все живые существа в большей или меньшей степени могут быть охарактеризованы по таким признакам, как размеры, форма тела, раздражимость, подвижность, а также особенности метаболизма, роста, размножения и адаптаций. Способность растений и животных приспосабливаться к своей среде позволяет им выживать при тех изменениях, которые происходят во внешнем мире. Адаптация может включать как очень быстрые изменения состояния организма, определяемые клеточной раздражимостью, так и очень длительные процессы, а именно появление мутаций и их естественный отбор.


Биологические ритмы.

Многие проявления жизнедеятельности организмов имеют циклический характер. Существуют, например, сезонные циклы в динамике численности некоторых видов; известны также циклические явления в жизни популяций, повторяющиеся каждый год, каждый лунный месяц, каждый день или каждый морской прилив (или отлив). Многие биологические функции отдельно взятого организма тоже имеют периодическую природу, например, чередование сна и бодрствования. По крайней мере, некоторые из этих циклов, по-видимому, регулируются внутренними биологическими часами.


Происхождение жизни.

Современные теории возникновения мутаций, естественного отбора и популяционной динамики дают объяснение того, как произошли современные животные и растения от ранее существовавших форм. Вопрос о первоначальном происхождении жизни на Земле рассматривался многими биологами. Некоторые из них считали, что формы жизни были принесены из космоса, с других планет. Сторонники подобной точки зрения ссылаются на обнаруженные в 1961 и 1966 структуры в метеоритах, напоминающие окаменелости микроскопических организмов.

Теорию происхождения первых живых существ из неживой материи развивали немецкий физиолог Э. Пфлюгер, английский генетик Дж. Холдейн и русский биохимик А. И. Опарин. Известен целый ряд реакций, посредством которых можно получить органические вещества из неорганических. Американский химик М.Калвин экспериментально показал, что излучение с высокой энергией, например космические лучи или электрические разряды, могут способствовать образованию органических соединений из простых неорганических компонентов. В 1953 американские химики Г. Юри и С. Миллер обнаружили, что некоторые аминокислоты, например глицин и аланин, и даже более сложные вещества могут быть получены из смеси паров воды, метана, аммиака и водорода, через которую всего лишь в течение недели пропускают электрические разряды.

Спонтанное зарождение живых организмов в той обстановке, которая существует на Земле в настоящее время, в высшей степени маловероятно, однако оно вполне могло произойти в прошлом. Все дело в различии условий, существовавших тогда и сейчас. До того, как на Земле возникла жизнь, органические соединения могли накапливаться, поскольку, во-первых, не существовало плесневых грибов, бактерий и других живых существ, способных их потреблять, а во-вторых, они не подвергались спонтанному окислению, так как в атмосфере тогда отсутствовал кислород (или его было очень мало).

Сейчас разработаны вполне правдоподобные теории, позволяющие объяснить, как органические вещества могли возникать в результате простых химических реакций, индуцированных электрическими разрядами, ультрафиолетовым излучением и другими физическими факторами, как эти молекулы могли затем образовать в море разбавленный бульон и как в результате их длительного взаимодействия формировались жидкие кристаллы, а затем и более сложные молекулы, по размерам приближающиеся к белкам и нуклеиновым кислотам.

Процесс, аналогичный естественному отбору, мог действовать уже среди этих еще не живых, но уже очень сложных молекул. Дальнейшее объединение молекул белков и нуклеиновых кислот могло привести к появлению организмов, напоминающих ныне существующие вирусы, от которых, возможно, произошли бактерии, давшие в конце концов начало растениям и животным. Другим крупным шагом в ранней эволюции было развитие белково-липидной мембраны, которая окружала скопление молекул и позволяла одни молекулы накапливать, а другие, наоборот, выбрасывать наружу. Все эти доводы привели ученых к заключению, что возникновение жизни на нашей планете — это событие не только вполне естественное и возможное, но и почти неизбежное. Более того, количество уже известных галактик, а соответственно и планет во Вселенной столь велико, что существование на многих из них условий, пригодных для жизни, представляется весьма вероятным. Не исключено, что жизнь на этих планетах действительно существует. Но если жизнь где-то возможна, то по прошествии достаточного времени она должна появиться и дать широкое разнообразие форм. Некоторые из этих форм могут сильно отличаться от тех, что встречаются на Земле, но другие могут быть очень похожими.

Теория происхождения жизни может быть сведена к следующим тезисам:

  • органические вещества образуются из неорганических в результате воздействия физических факторов окружающей среды;
  • органические вещества взаимодействуют друг с другом, образуя все более сложные комплексы, из которых постепенно формируются ферменты и самовоспроизводящиеся системы, напоминающие гены;
  • сложные молекулы становятся более разнообразными и объединяются в примитивные, похожие на вирусы организмы;
  • вирусоподобные организмы постепенно эволюционируют и дают начало растениям и животным.

Публикации по теме