تحويل التعبيرات اللوغاريتمية. اللوغاريتم الطبيعي، الدالة ln x

الخصائص الأساسية للوغاريتم الطبيعي، الرسم البياني، مجال التعريف، مجموعة القيم، الصيغ الأساسية، المشتق، التكامل، التوسع في سلسلة الطاقةوتمثيل الدالة ln x باستخدام الأعداد المركبة.

تعريف

اللوغاريتم الطبيعيهي الدالة ص = لن س، معكوس الأسي، x = e y، وهو اللوغاريتم لأساس الرقم e: ln x = سجل e x.

يستخدم اللوغاريتم الطبيعي على نطاق واسع في الرياضيات لأن مشتقه له أبسط شكل: (ln x)′ = 1/ س.

قائم على تعريفات، أساس اللوغاريتم الطبيعي هو الرقم ه:
ه ≅ 2.718281828459045...;
.

رسم بياني للدالة y = لن س.

رسم بياني للوغاريتم الطبيعي (الدوال y = لن س) يتم الحصول عليها من الرسم البياني الأسي عن طريق انعكاس المرآة بالنسبة للخط المستقيم y = x.

يتم تعريف اللوغاريتم الطبيعي للقيم الموجبة للمتغير x. ويزداد رتابة في مجال تعريفه.

في س → 0 نهاية اللوغاريتم الطبيعي هو ناقص اللانهاية (-∞).

مثل x → + ∞، نهاية اللوغاريتم الطبيعي هي زائد ما لا نهاية (+ ∞). بالنسبة لـ x الكبيرة، يزداد اللوغاريتم ببطء شديد. أي وظيفة الطاقة x a مع الأس الموجب a ينمو بشكل أسرع من اللوغاريتم.

خصائص اللوغاريتم الطبيعي

مجال التعريف، مجموعة القيم، القيم القصوى، الزيادة، النقصان

اللوغاريتم الطبيعي هو دالة متزايدة بشكل رتيب، لذلك ليس لها نقاط نهاية. يتم عرض الخصائص الرئيسية للوغاريتم الطبيعي في الجدول.

قيم lnx

قانون الجنسية 1 = 0

الصيغ الأساسية للوغاريتمات الطبيعية

الصيغ التالية من تعريف الدالة العكسية:

الخاصية الرئيسية للوغاريتمات وعواقبها

صيغة استبدال القاعدة

يمكن التعبير عن أي لوغاريتم بدلالة اللوغاريتمات الطبيعية باستخدام صيغة الاستبدال الأساسية:

يتم عرض أدلة هذه الصيغ في قسم "اللوغاريتم".

وظيفة عكسية

معكوس اللوغاريتم الطبيعي هو الأس.

اذا ثم

اذا ثم.

مشتق ln x

مشتق من اللوغاريتم الطبيعي:
.
مشتق من اللوغاريتم الطبيعي للمعامل x:
.
مشتق من الترتيب ن:
.
اشتقاق الصيغ > > >

أساسي

يتم حساب التكامل عن طريق التكامل بالأجزاء:
.
لذا،

التعبيرات باستخدام الأعداد المركبة

النظر في وظيفة المتغير المركب z :
.
دعونا نعبر عن المتغير المعقد ضعبر الوحدة النمطية صوالحجة φ :
.
وباستخدام خصائص اللوغاريتم نحصل على:
.
أو
.
لم يتم تعريف الوسيطة φ بشكل فريد. إذا وضعت
، حيث n عدد صحيح،
سيكون نفس الرقم لمختلف n.

ولذلك، فإن اللوغاريتم الطبيعي، كدالة لمتغير معقد، ليس دالة ذات قيمة واحدة.

توسيع سلسلة الطاقة

عندما يحدث التوسع:

مراجع:
في. برونشتاين، ك.أ. سيمنديايف، دليل الرياضيات للمهندسين وطلاب الجامعات، "لان"، 2009.

اللوغاريتمات، مثل أي أرقام، يمكن جمعها وطرحها وتحويلها بكل الطرق. ولكن بما أن اللوغاريتمات ليست أرقامًا عادية تمامًا، فهناك قواعد تسمى هنا الخصائص الرئيسية.

أنت بالتأكيد بحاجة إلى معرفة هذه القواعد - فبدونها لا يمكن حل أي مشكلة خطيرة. مشكلة لوغاريتمية. بالإضافة إلى ذلك، هناك عدد قليل جدًا منهم - يمكنك تعلم كل شيء في يوم واحد. اذا هيا بنا نبدأ.

جمع وطرح اللوغاريتمات

فكر في لوغاريتمين لهما نفس الأساس: السجل أ سوسجل أ ذ. ومن ثم يمكن إضافتها وطرحها، و:

  1. سجل أ س+ سجل أ ذ= سجل أ (س · ذ);
  2. سجل أ س- سجل أ ذ= سجل أ (س : ذ).

إذن، مجموع اللوغاريتمات يساوي لوغاريتم حاصل الضرب، والفرق يساوي لوغاريتم حاصل القسمة. يرجى ملاحظة: النقطة الأساسية هنا هي أسباب متطابقة. إذا كانت الأسباب مختلفة، فهذه القواعد لا تعمل!

هذه الصيغ سوف تساعدك على الحساب التعبير اللوغاريتميحتى عندما لا يتم حساب أجزائه الفردية (انظر الدرس "ما هو اللوغاريتم"). ألقِ نظرة على الأمثلة وانظر:

سجل 6 4 + سجل 6 9.

بما أن اللوغاريتمات لها نفس الأساس، فإننا نستخدم صيغة الجمع:
سجل 6 4 + سجل 6 9 = سجل 6 (4 9) = سجل 6 36 = 2.

مهمة. أوجد قيمة التعبير: log 2 48 − log 2 3.

القواعد هي نفسها، نستخدم صيغة الفرق:
سجل 2 48 - سجل 2 3 = سجل 2 (48: 3) = سجل 2 16 = 4.

مهمة. أوجد قيمة التعبير: log 3 135 − log 3 5.

مرة أخرى القواعد هي نفسها، لذلك لدينا:
سجل 3 135 - سجل 3 5 = سجل 3 (135: 5) = سجل 3 27 = 3.

كما ترون، تتكون التعبيرات الأصلية من لوغاريتمات "سيئة"، والتي لا يتم حسابها بشكل منفصل. ولكن بعد التحويلات يتم الحصول على أرقام طبيعية تماما. كثيرون مبنيون على هذه الحقيقة أوراق الاختبار. نعم، يتم تقديم التعبيرات الشبيهة بالاختبار بكل جدية (أحيانًا بدون أي تغييرات تقريبًا) في امتحان الدولة الموحدة.

استخراج الأس من اللوغاريتم

الآن دعونا نعقد المهمة قليلاً. ماذا لو كانت قاعدة أو وسيطة اللوغاريتم قوة؟ ومن ثم يمكن إخراج أس هذه الدرجة من إشارة اللوغاريتم وفق القواعد التالية:

ومن السهل أن نرى أن القاعدة الأخيرة تتبع القاعدة الأولى والثانية. ولكن من الأفضل أن تتذكرها على أي حال - ففي بعض الحالات سوف تقلل بشكل كبير من حجم العمليات الحسابية.

بالطبع، كل هذه القواعد تكون منطقية إذا تمت ملاحظة ODZ للوغاريتم: أ > 0, أ ≠ 1, س> 0. وشيء آخر: تعلم كيفية تطبيق جميع الصيغ ليس فقط من اليسار إلى اليمين، ولكن أيضًا بالعكس، أي. يمكنك إدخال الأرقام قبل تسجيل اللوغاريتم في اللوغاريتم نفسه. وهذا هو المطلوب في أغلب الأحيان.

مهمة. أوجد قيمة التعبير: log 7 49 6 .

دعونا نتخلص من الدرجة في الوسيطة باستخدام الصيغة الأولى:
سجل 7 49 6 = 6 سجل 7 49 = 6 2 = 12

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن المقام يحتوي على لوغاريتم، قاعدته ووسيطه عبارة عن قوى دقيقة: 16 = 2 4 ; 49 = 7 2. لدينا:

[تعليق على الصورة]

أعتقد أن المثال الأخير يتطلب بعض التوضيح. أين ذهبت اللوغاريتمات؟ حتى اللحظة الأخيرة نحن نعمل فقط مع القاسم. لقد قدمنا ​​أساس ووسيطة اللوغاريتم الموجود هناك في شكل قوى وأزلنا الأسس - لقد حصلنا على كسر "من ثلاثة طوابق".

الآن دعونا نلقي نظرة على الكسر الرئيسي. يحتوي البسط والمقام على نفس الرقم: log 2 7. بما أن log 2 7 ≠ 0، يمكننا تبسيط الكسر - سيبقى 2/4 في المقام. ووفقا للقواعد الحسابية، يمكن نقل الأربعة إلى البسط، وهذا ما تم. وكانت النتيجة الجواب: 2.

الانتقال إلى أساس جديد

عند الحديث عن قواعد جمع وطرح اللوغاريتمات، أكدت على وجه التحديد أنها تعمل فقط مع نفس القواعد. وماذا لو كانت الأسباب مختلفة؟ ماذا لو لم تكن صلاحيات محددة لنفس العدد؟

تأتي صيغ الانتقال إلى أساس جديد للإنقاذ. دعونا صياغتها في شكل نظرية:

دع سجل اللوغاريتم يعطى أ س. ثم لأي رقم جمثل ذلك ج> 0 و ج≠ 1، المساواة صحيحة:

[تعليق على الصورة]

على وجه الخصوص، إذا وضعنا ج = س، نحن نحصل:

[تعليق على الصورة]

ويترتب على الصيغة الثانية أنه يمكن تبديل أساس ووسيطة اللوغاريتم، ولكن في هذه الحالة يتم "قلب" التعبير بأكمله، أي. يظهر اللوغاريتم في المقام.

نادرًا ما توجد هذه الصيغ في التعبيرات العددية العادية. من الممكن تقييم مدى ملاءمتها فقط من خلال اتخاذ القرار المعادلات اللوغاريتميةوعدم المساواة.

ولكن هناك مشاكل لا يمكن حلها على الإطلاق إلا بالانتقال إلى أساس جديد. دعونا نلقي نظرة على اثنين من هذه:

مهمة. أوجد قيمة التعبير: سجل 5 16 سجل 2 25.

لاحظ أن وسيطات كلا اللوغاريتمات تحتوي على قوى دقيقة. لنأخذ المؤشرات: log 5 16 = log 5 2 4 = 4log 5 2; سجل 2 25 = سجل 2 5 2 = 2سجل 2 5;

الآن دعونا "نعكس" اللوغاريتم الثاني:

[تعليق على الصورة]

وبما أن حاصل الضرب لا يتغير عند إعادة ترتيب العوامل، فقد ضربنا أربعة في اثنين بهدوء، ثم تعاملنا مع اللوغاريتمات.

مهمة. أوجد قيمة التعبير: log 9 100 lg 3.

أساس ووسيطة اللوغاريتم الأول هما القوى الدقيقة. دعنا نكتب هذا ونتخلص من المؤشرات:

[تعليق على الصورة]

الآن دعونا نتخلص من اللوغاريتم العشري بالانتقال إلى قاعدة جديدة:

[تعليق على الصورة]

الهوية اللوغاريتمية الأساسية

في كثير من الأحيان، في عملية الحل، من الضروري تمثيل رقم على هيئة لوغاريتم لقاعدة معينة. في هذه الحالة، سوف تساعدنا الصيغ التالية:

في الحالة الأولى العدد نيصبح مؤشرا على درجة الوقوف في الحجة. رقم نيمكن أن تكون أي شيء على الإطلاق، لأنها مجرد قيمة لوغاريتمية.

الصيغة الثانية هي في الواقع تعريف معاد صياغته. وهذا ما يطلق عليه: الهوية اللوغاريتمية الأساسية.

في الواقع، ماذا سيحدث إذا كان العدد برفع إلى هذه القوة أن العدد بلهذه القوة يعطي الرقم أ؟ هذا صحيح: تحصل على نفس الرقم أ. اقرأ هذه الفقرة بعناية مرة أخرى - كثير من الناس عالقون فيها.

مثل صيغ الانتقال إلى قاعدة جديدة، تكون الهوية اللوغاريتمية الأساسية في بعض الأحيان هي الحل الوحيد الممكن.

مهمة. ابحث عن معنى العبارة:

[تعليق على الصورة]

لاحظ أن log 25 64 = log 5 8 - ببساطة أخذ المربع من قاعدة اللوغاريتم ووسيطه. مع الأخذ بعين الاعتبار قواعد ضرب القوى ذات الأساس نفسه، نحصل على:

[تعليق على الصورة]

إذا كان أي شخص لا يعرف، كانت هذه مهمة حقيقية من امتحان الدولة الموحدة :)

الوحدة اللوغاريتمية والصفر اللوغاريتمي

في الختام، سأقدم هويتين يصعب وصفهما بالخصائص - بل هما نتيجة لتعريف اللوغاريتم. إنهم يظهرون باستمرار في المشاكل، ومن المدهش أنهم يخلقون مشاكل حتى للطلاب "المتقدمين".

  1. سجل أ أ= 1 هي وحدة لوغاريتمية. تذكر مرة واحدة وإلى الأبد: اللوغاريتم لأي قاعدة أمن هذه القاعدة ذاتها يساوي واحدًا.
  2. سجل أ 1 = 0 هو صفر لوغاريتمي. قاعدة أيمكن أن يكون أي شيء، ولكن إذا كانت الوسيطة تحتوي على واحد، فإن اللوغاريتم يساوي صفرًا! لأن أ 0 = 1 هو نتيجة مباشرة للتعريف.

هذا كل الخصائص. تأكد من ممارسة وضعها موضع التنفيذ! قم بتنزيل ورقة الغش في بداية الدرس وطباعتها وحل المشكلات.

التعابير اللوغاريتمية، حل الأمثلة. في هذه المقالة سوف نلقي نظرة على المسائل المتعلقة بحل اللوغاريتمات. تطرح المهام سؤال العثور على معنى التعبير. تجدر الإشارة إلى أن مفهوم اللوغاريتم يستخدم في العديد من المهام وفهم معناه مهم للغاية. أما بالنسبة لامتحان الدولة الموحدة، فيستخدم اللوغاريتم عند حل المعادلات، وفي المسائل التطبيقية، وأيضا في المهام المتعلقة بدراسة الدوال.

دعونا نعطي أمثلة لفهم معنى اللوغاريتم:


الهوية اللوغاريتمية الأساسية:

خصائص اللوغاريتمات التي يجب تذكرها دائمًا:

* لوغاريتم المنتج يساوي مجموع لوغاريتمات العوامل.

* * *

* لوغاريتم القسمة (الكسر) يساوي الفرق بين لوغاريتمات العوامل.

* * *

*لوغاريتم الأس يساوي حاصل ضرب الأس ولوغاريتم قاعدته.

* * *

*الانتقال إلى أساس جديد

* * *

المزيد من الخصائص:

* * *

يرتبط حساب اللوغاريتمات ارتباطًا وثيقًا باستخدام خصائص الأسس.

دعونا قائمة بعض منهم:

الجوهر من هذا العقاريكمن في حقيقة أنه عند نقل البسط إلى المقام والعكس، تتغير إشارة الأس إلى العكس. على سبيل المثال:

نتيجة طبيعية من هذه الخاصية:

* * *

عند رفع قوة إلى قوة، يظل الأساس كما هو، ولكن يتم ضرب الأسس.

* * *

كما رأيت، فإن مفهوم اللوغاريتم نفسه بسيط. الشيء الرئيسي هو ما هو مطلوب ممارسة جيدةمما يعطي مهارة معينة. وبطبيعة الحال، مطلوب معرفة الصيغ. إذا لم يتم تطوير مهارة تحويل اللوغاريتمات الأولية، فعند حل المهام البسيطة، يمكنك بسهولة ارتكاب خطأ.

تدرب على حل أبسط الأمثلة من دورة الرياضيات أولاً، ثم انتقل إلى الأمثلة الأكثر تعقيدًا. في المستقبل، سأوضح بالتأكيد كيف يتم حل اللوغاريتمات "المخيفة"، فهي لن تظهر في امتحان الدولة الموحدة، لكنها مثيرة للاهتمام، لا تفوتها!

هذا كل شئ! كل التوفيق لك!

مع خالص التقدير، الكسندر كروتيتسكيخ

ملاحظة: سأكون ممتنًا لو أخبرتني عن الموقع على الشبكات الاجتماعية.

    دعنا نبدء ب خصائص لوغاريتم واحد. وصياغتها هي كما يلي: لوغاريتم الوحدة يساوي صفراً، أي سجل 1=0لأي > 0، أ≠1. الإثبات ليس صعبًا: نظرًا لأن 0 =1 لأي ​​a يفي بالشروط المذكورة أعلاه a>0 وa≠1، فإن سجل المساواة a 1=0 الذي سيتم إثباته يتبع مباشرة تعريف اللوغاريتم.

    دعونا نعطي أمثلة لتطبيق الخاصية المدروسة: log 3 1=0, log1=0 و .

    دعنا ننتقل إلى الخاصية التالية: لوغاريتم رقم يساوي الأساس يساوي واحدًا، إنه، سجل أ = 1لـ >0، أ≠1. في الواقع، نظرًا لأن 1 =a لأي a، فمن خلال تعريف سجل اللوغاريتم a a=1.

    من أمثلة استخدام خاصية اللوغاريتمات هذه سجل المساواة 5 5=1، سجل 5.6 5.6 وlne=1.

    على سبيل المثال، سجل 2 2 7 =7، سجل 10 -4 = -4 و .

    لوغاريتم منتج رقمين موجبين x و y يساوي منتج لوغاريتمات هذه الأرقام: سجل أ (س ص) = سجل س + سجل ص, أ>0 , أ≠1 . دعونا نثبت خاصية لوغاريتم المنتج. بسبب خصائص الدرجة سجل a x+log a y =a سجل a x ·a سجل a y، وبما أنه من خلال الهوية اللوغاريتمية الرئيسية سجل a x =x وlog a y =y، ثم سجل a x ·a log a y =x·y. وهكذا، سجل a x+log a y =x·y، ومنه، حسب تعريف اللوغاريتم، يتبع ذلك المساواة التي تم إثباتها.

    لنعرض أمثلة على استخدام خاصية لوغاريتم المنتج: log 5 (2 3)=log 5 2+log 5 3 و .

    يمكن تعميم خاصية لوغاريتم المنتج على منتج عدد محدود n من الأعداد الموجبة x 1 , x 2 , …, x n كـ سجل أ (x 1 ·x 2 ·…·x n)= سجل أ × 1 +سجل أ × 2 +…+سجل أ × ن . ويمكن إثبات هذه المساواة دون مشاكل.

    على سبيل المثال، يمكن استبدال اللوغاريتم الطبيعي لمنتج ما بمجموع ثلاثة اللوغاريتمات الطبيعيةأرقام 4، ه، و.

    لوغاريتم حاصل ضرب رقمين موجبين x و y يساوي الفرق بين لوغاريتمات هذه الأرقام. تتوافق خاصية لوغاريتم حاصل القسمة مع صيغة النموذج، حيث a>0 وa≠1 وx وy هي بعض الأرقام الموجبة. تم إثبات صحة هذه الصيغة وكذلك صيغة لوغاريتم حاصل الضرب: منذ ، ثم حسب تعريف اللوغاريتم.

    فيما يلي مثال على استخدام خاصية اللوغاريتم: .

    دعنا ننتقل إلى خاصية لوغاريتم القوة. لوغاريتم الدرجة يساوي حاصل ضرب الأس ولوغاريتم معامل قاعدة هذه الدرجة. دعونا نكتب خاصية لوغاريتم القوة كصيغة: سجل أ ب ع =p·سجل أ |ب|، حيث a>0 وa≠1 وb وp هي أرقام بحيث تكون الدرجة b p منطقية وb p >0.

    أولا نثبت هذه الخاصية لإيجابية ب. تسمح لنا الهوية اللوغاريتمية الأساسية بتمثيل الرقم b في صورة a log a b ، ثم b p =(a log a b) p ، والتعبير الناتج، بسبب خاصية القوة، يساوي a p·log a b . لذلك نصل إلى المساواة b p =a p·log a b، والتي منها، من خلال تعريف اللوغاريتم، نستنتج أن log a b p =p·log a b.

    يبقى إثبات هذه الخاصية لسلبية b. نلاحظ هنا أن التعبير log a b p للسالب b منطقي فقط بالنسبة للأسس الزوجية p (نظرًا لأن قيمة الدرجة b p يجب أن تكون أكبر من الصفر، وإلا فلن يكون اللوغاريتم منطقيًا)، وفي هذه الحالة b p =|b| ص. ثم ب ع =|ب| p =(سجل a |b|) p =a p·log a |b|، من حيث سجل a b p =p·log a |b| .

    على سبيل المثال، و ln(-3) 4 =4·ln|-3|=4·ln3 .

    يتبع من الخاصية السابقة خاصية اللوغاريتم من الجذر: لوغاريتم الجذر n يساوي حاصل ضرب الكسر 1/n في لوغاريتم التعبير الجذري، أي ، حيث ا>0، أ≠1، ن – عدد طبيعي، أكبر من واحد، ب> 0.

    والبرهان مبني على المساواة (انظر) التي تصح لأي موجب ب، وخاصية لوغاريتم القوة: .

    فيما يلي مثال لاستخدام هذه الخاصية: .

    الآن دعونا نثبت صيغة للانتقال إلى قاعدة لوغاريتمية جديدةعطوف . للقيام بذلك، يكفي إثبات صحة سجل المساواة c b=log a b·log c a. تسمح لنا الهوية اللوغاريتمية الأساسية بتمثيل الرقم b كسجل a b ، ثم log c b=log c a log a b . يبقى استخدام خاصية لوغاريتم الدرجة: سجل ج سجل أ ب = سجل أ ب سجل ج أ. وهذا يثبت سجل المساواة c b=log a b ·log c a، وهو ما يعني أن صيغة الانتقال إلى قاعدة جديدة للوغاريتم قد تم إثباتها أيضًا.

    دعونا نعرض بعض الأمثلة لاستخدام خاصية اللوغاريتمات هذه: و .

    تتيح لك صيغة الانتقال إلى قاعدة جديدة الانتقال إلى العمل باستخدام اللوغاريتمات التي لها قاعدة "ملائمة". على سبيل المثال، يمكن استخدامه للانتقال إلى اللوغاريتمات الطبيعية أو العشرية بحيث يمكنك حساب قيمة اللوغاريتم من جدول اللوغاريتمات. تسمح صيغة الانتقال إلى قاعدة لوغاريتمية جديدة أيضًا، في بعض الحالات، بإيجاد قيمة لوغاريتم معين عندما تكون قيم بعض اللوغاريتمات ذات أسس أخرى معروفة.

    غالبًا ما يتم استخدام حالة خاصة من صيغة الانتقال إلى قاعدة لوغاريتمية جديدة لـ c=b للنموذج . يوضح هذا أن السجل a b و السجل b a - . على سبيل المثال، .

    يتم استخدام الصيغة أيضًا في كثير من الأحيان ، وهو مناسب للعثور على قيم اللوغاريتمات. ولتأكيد كلامنا، سنبين كيف يمكن استخدامه لحساب قيمة لوغاريتم النموذج. لدينا . لإثبات الصيغة يكفي استخدام صيغة الانتقال إلى قاعدة جديدة للوغاريتم a: .

    يبقى إثبات خصائص مقارنة اللوغاريتمات.

    دعونا نثبت أنه لأي أرقام موجبة ب 1 و ب 2، ب 1 log a b 2 و لـ a>1 – سجل عدم المساواة a b 1

    أخيرًا، يبقى إثبات آخر خصائص اللوغاريتمات المذكورة. دعونا نقتصر على إثبات الجزء الأول منه، أي أننا سنثبت أنه إذا كان 1 > 1 و 2 > 1 و 1 1 صحيح سجل أ 1 ب>سجل أ 2 ب . تم إثبات العبارات المتبقية لخاصية اللوغاريتمات هذه وفقًا لمبدأ مماثل.

    دعونا نستخدم الطريقة المعاكسة. لنفترض أنه بالنسبة لـ 1>1، و2>1، و1 1 صحيح سجل a 1 b≥log a 2 b . واستنادا إلى خصائص اللوغاريتمات، يمكن إعادة كتابة هذه المتباينات على النحو التالي: و على التوالي، ومنهم يتبع ذلك سجل ب أ 1 ≥ سجل ب أ 2 و سجل ب أ 1 ≥ سجل ب أ 2، على التوالي. بعد ذلك، وفقًا لخصائص القوى ذات الأساس نفسه، يجب أن تكون المعادلتان b log b a 1 ≥b log b a 2 و b log b a 1 ≥b log b a 2، أي a 1 ≥a 2 . لذلك وصلنا إلى تناقض الشرط أ 1

فهرس.

  • كولموجوروف إيه إن، أبراموف إيه إم، دودنيتسين يو.بي. وغيرها الجبر وبدايات التحليل: كتاب مدرسي للصفوف 10 - 11 بمؤسسات التعليم العام.
  • جوسيف ف.أ.، موردكوفيتش أ.ج. الرياضيات (دليل للملتحقين بالمدارس الفنية).

نواصل دراسة اللوغاريتمات. في هذا المقال سنتحدث عنه حساب اللوغاريتمات، وتسمى هذه العملية اللوغاريتم. أولاً سوف نفهم حساب اللوغاريتمات حسب التعريف. بعد ذلك، دعونا نلقي نظرة على كيفية العثور على قيم اللوغاريتمات باستخدام خصائصها. بعد ذلك سنركز على حساب اللوغاريتمات من خلال القيم المحددة في البداية للوغاريتمات الأخرى. وأخيرًا، دعونا نتعلم كيفية استخدام جداول اللوغاريتمات. يتم تزويد النظرية بأكملها بأمثلة مع حلول مفصلة.

التنقل في الصفحة.

حساب اللوغاريتمات حسب التعريف

في أبسط الحالات، من الممكن تنفيذ الأمر بسرعة وسهولة إيجاد اللوغاريتم حسب التعريف. دعونا نلقي نظرة فاحصة على كيفية حدوث هذه العملية.

جوهرها هو تمثيل الرقم ب في النموذج ج، والذي، من خلال تعريف اللوغاريتم، الرقم ج هو قيمة اللوغاريتم. وهذا يعني، حسب التعريف، أن سلسلة المساواة التالية تتوافق مع إيجاد اللوغاريتم: log a b=log a a c =c.

لذا، فإن حساب اللوغاريتم حسب التعريف يتلخص في العثور على رقم c بحيث يكون a c = b، والرقم c نفسه هو القيمة المطلوبة للوغاريتم.

مع الأخذ في الاعتبار المعلومات الواردة في الفقرات السابقة، عندما يتم إعطاء الرقم الموجود أسفل علامة اللوغاريتم بواسطة قوة معينة لقاعدة اللوغاريتم، يمكنك الإشارة على الفور إلى ما يساويه اللوغاريتم - فهو يساوي الأس. دعونا نعرض الحلول بالأمثلة.

مثال.

ابحث عن السجل 2 2 −3 واحسب أيضًا اللوغاريتم الطبيعي للرقم e 5,3.

حل.

يتيح لنا تعريف اللوغاريتم أن نقول على الفور أن السجل 2 2 −3 =−3. في الواقع، الرقم الموجود تحت علامة اللوغاريتم يساوي الأساس 2 أس −3.

وبالمثل نجد اللوغاريتم الثاني: lne 5.3 =5.3.

إجابة:

سجل 2 2 −3 =−3 و lne 5,3 =5,3.

إذا لم يتم تحديد الرقم b تحت علامة اللوغاريتم كقوة لقاعدة اللوغاريتم، فأنت بحاجة إلى النظر بعناية لمعرفة ما إذا كان من الممكن التوصل إلى تمثيل للرقم b في النموذج a c . غالبًا ما يكون هذا التمثيل واضحًا تمامًا، خاصة عندما يكون الرقم الموجود تحت علامة اللوغاريتم مساويًا للأساس أس 1، أو 2، أو 3، ...

مثال.

احسب اللوغاريتمات log 5 25 و .

حل.

من السهل أن ترى أن 25=5 2، وهذا يسمح لك بحساب اللوغاريتم الأول: log 5 25=log 5 5 2 =2.

دعنا ننتقل إلى حساب اللوغاريتم الثاني. يمكن تمثيل الرقم كقوة 7: (انظر إذا لزم الأمر). لذلك، .

لنعد كتابة اللوغاريتم الثالث بالشكل التالي. الآن يمكنك أن ترى ذلك ، ومنه نستنتج ذلك . لذلك، من خلال تعريف اللوغاريتم .

باختصار يمكن كتابة الحل كالتالي: .

إجابة:

سجل 5 25=2 , و .

عندما يكون هناك عدد طبيعي كبير بما فيه الكفاية تحت علامة اللوغاريتم، فلن يضر تحليله إلى عوامل أولية. غالبًا ما يساعد على تمثيل هذا الرقم كقوة لقاعدة اللوغاريتم، وبالتالي حساب هذا اللوغاريتم حسب التعريف.

مثال.

أوجد قيمة اللوغاريتم.

حل.

تسمح لك بعض خصائص اللوغاريتمات بتحديد قيمة اللوغاريتمات على الفور. تتضمن هذه الخصائص خاصية لوغاريتم واحد وخاصية لوغاريتم رقم يساوي الأساس: log 1 1=log a a 0 =0 وlog a=log a 1 =1. أي أنه عندما يكون هناك رقم 1 أو رقم يساوي أساس اللوغاريتم تحت علامة اللوغاريتم، فإن اللوغاريتمات في هذه الحالات تساوي 0 و1 على التوالي.

مثال.

ما هي اللوغاريتمات وlog10 يساوي؟

حل.

منذ ذلك الحين يتبع من تعريف اللوغاريتم .

في المثال الثاني، يتطابق الرقم 10 تحت علامة اللوغاريتم مع قاعدته، وبالتالي فإن اللوغاريتم العشري للعشرة يساوي واحدًا، أي lg10=lg10 1 =1.

إجابة:

و إل جي10=1 .

لاحظ أن حساب اللوغاريتمات حسب التعريف (الذي ناقشناه في الفقرة السابقة) يعني استخدام سجل المساواة a a p =p، وهو أحد خصائص اللوغاريتمات.

من الناحية العملية، عندما يتم تمثيل رقم تحت علامة اللوغاريتم وقاعدة اللوغاريتم بسهولة كقوة لرقم معين، فمن الملائم جدًا استخدام الصيغة وهو ما يتوافق مع إحدى خصائص اللوغاريتمات. دعونا نلقي نظرة على مثال لإيجاد لوغاريتم يوضح استخدام هذه الصيغة.

مثال.

احسب اللوغاريتم.

حل.

إجابة:

.

تُستخدم أيضًا خصائص اللوغاريتمات غير المذكورة أعلاه في العمليات الحسابية، لكننا سنتحدث عن ذلك في الفقرات التالية.

إيجاد اللوغاريتمات من خلال اللوغاريتمات المعروفة الأخرى

تستمر المعلومات الواردة في هذه الفقرة في موضوع استخدام خصائص اللوغاريتمات عند حسابها. لكن الاختلاف الرئيسي هنا هو أن خصائص اللوغاريتمات تُستخدم للتعبير عن اللوغاريتم الأصلي بدلالة لوغاريتم آخر تكون قيمته معروفة. دعونا نعطي مثالا للتوضيح. لنفترض أننا نعرف ذلك log 2 3≈1.584963، ثم يمكننا إيجاد، على سبيل المثال، log 2 6 عن طريق إجراء تحويل بسيط باستخدام خصائص اللوغاريتم: سجل 2 6=سجل 2 (2 3)=سجل 2 2+سجل 2 3≈ 1+1,584963=2,584963 .

في المثال أعلاه، كان يكفينا استخدام خاصية لوغاريتم المنتج. ومع ذلك، في كثير من الأحيان يكون من الضروري استخدام ترسانة أوسع من خصائص اللوغاريتمات لحساب اللوغاريتم الأصلي من خلال تلك المحددة.

مثال.

احسب لوغاريتم 27 للأساس 60 إذا كنت تعلم أن log 60 2=a وlog 60 5=b.

حل.

لذلك نحن بحاجة إلى العثور على سجل 60 27 . من السهل أن نرى أن 27 = 3 3 ، واللوغاريتم الأصلي، بسبب خاصية لوغاريتم الأس، يمكن إعادة كتابته بالشكل 3·log 60 3 .

الآن دعونا نرى كيفية التعبير عن السجل 60 3 بدلالة اللوغاريتمات المعروفة. خاصية لوغاريتم الرقم الذي يساوي الأساس تسمح لنا بكتابة سجل المساواة 60 60=1. ومن ناحية أخرى، سجل 60 60=log60(2 2 3 5)= سجل 60 2 2 +سجل 60 3+سجل 60 5= 2·سجل 60 2+سجل 60 3+سجل 60 5 . هكذا، 2 سجل 60 2+سجل 60 3+سجل 60 5=1. لذلك، سجل 60 3=1−2·سجل 60 2−سجل 60 5=1−2·أ−ب.

أخيرًا، نحسب اللوغاريتم الأصلي: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

إجابة:

سجل 60 27=3·(1−2·a−b)=3−6·a−3·b.

بشكل منفصل، تجدر الإشارة إلى معنى صيغة الانتقال إلى قاعدة لوغاريتم النموذج الجديدة . يتيح لك الانتقال من اللوغاريتمات ذات الأساس إلى اللوغاريتمات ذات الأساس المحدد والتي تكون قيمها معروفة أو من الممكن العثور عليها. عادة، من اللوغاريتم الأصلي، باستخدام صيغة الانتقال، ينتقلون إلى اللوغاريتمات في إحدى القواعد 2 أو e أو 10، حيث توجد لهذه القواعد جداول لوغاريتمية تسمح بحساب قيمها بدرجة معينة من دقة. وفي الفقرة التالية سوف نبين كيف يتم ذلك.

الجداول اللوغاريتمية واستخداماتها

يمكن استخدام الحساب التقريبي لقيم اللوغاريتم جداول اللوغاريتم. جدول اللوغاريتم الأساسي 2 الأكثر استخدامًا، وجدول اللوغاريتم الطبيعي، وجدول اللوغاريتم العشري. عند العمل في نظام الأرقام العشرية، من المناسب استخدام جدول اللوغاريتمات على أساس العشرة. بمساعدتها سوف نتعلم كيفية العثور على قيم اللوغاريتمات.










يتيح لك الجدول المعروض العثور على قيم اللوغاريتمات العشرية للأرقام من 1000 إلى 9999 (مع ثلاث منازل عشرية) بدقة تصل إلى جزء من عشرة آلاف. سنقوم بتحليل مبدأ إيجاد قيمة اللوغاريتم باستخدام جدول اللوغاريتمات العشرية باستخدام مثال محدد - الأمر أكثر وضوحًا بهذه الطريقة. لنجد log1.256.

في العمود الأيسر من جدول اللوغاريتمات العشرية نجد أول رقمين من الرقم 1.256، أي نجد 1.2 (هذا الرقم محاط بدائرة باللون الأزرق من أجل الوضوح). تم العثور على الرقم الثالث من الرقم 1.256 (الرقم 5) في السطر الأول أو الأخير على يسار الخط المزدوج (هذا الرقم محاط بدائرة باللون الأحمر). الرقم الرابع من الرقم الأصلي 1.256 (الرقم 6) موجود في السطر الأول أو الأخير على يمين الخط المزدوج (هذا الرقم محاط بدائرة بخط أخضر). الآن نجد الأرقام في خلايا جدول اللوغاريتم عند تقاطع الصف المحدد والأعمدة المحددة (يتم تمييز هذه الأرقام باللون البرتقالي). مجموع الأرقام المحددة يعطي القيمة المطلوبة للوغاريتم العشري بدقة حتى المنزلة العشرية الرابعة، أي، سجل1.236≈0.0969+0.0021=0.0990.

هل من الممكن باستخدام الجدول أعلاه إيجاد قيم اللوغاريتمات العشرية للأعداد التي تحتوي على أكثر من ثلاثة أرقام بعد العلامة العشرية، وكذلك تلك التي تتجاوز النطاق من 1 إلى 9.999؟ نعم يمكنك ذلك. دعونا نظهر كيف يتم ذلك مع مثال.

دعونا نحسب lg102.76332. أولا تحتاج إلى الكتابة الرقم في النموذج القياسي: 102.76332=1.0276332·10 2. بعد ذلك، ينبغي تقريب الجزء العشري إلى المنزلة العشرية الثالثة، لدينا 1.0276332 10 2 ≈1.028 10 2، في حين أن اللوغاريتم العشري الأصلي يساوي تقريبًا لوغاريتم الرقم الناتج، أي أننا نأخذ log102.76332≈lg1.028·10 2. الآن نطبق خصائص اللوغاريتم: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. وأخيرا نجد قيمة اللوغاريتم lg1.028 من جدول اللوغاريتمات العشرية lg1.028≈0.0086+0.0034=0.012. ونتيجة لذلك، تبدو عملية حساب اللوغاريتم برمتها كما يلي: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

في الختام، تجدر الإشارة إلى أنه باستخدام جدول اللوغاريتمات العشرية، يمكنك حساب القيمة التقريبية لأي لوغاريتم. للقيام بذلك، يكفي استخدام صيغة الانتقال للانتقال إلى اللوغاريتمات العشرية، والعثور على قيمها في الجدول، وإجراء العمليات الحسابية المتبقية.

على سبيل المثال، دعونا نحسب السجل 2 3 . وفقا لصيغة الانتقال إلى قاعدة جديدة للوغاريتم، لدينا . من جدول اللوغاريتمات العشرية نجد log3≈0.4771 و log2≈0.3010. هكذا، .

فهرس.

  • كولموجوروف إيه إن، أبراموف إيه إم، دودنيتسين يو.بي. وغيرها الجبر وبدايات التحليل: كتاب مدرسي للصفوف 10 - 11 بمؤسسات التعليم العام.
  • جوسيف ف.أ.، موردكوفيتش أ.ج. الرياضيات (دليل للملتحقين بالمدارس الفنية).

منشورات حول هذا الموضوع