Преобразуване на логаритмични изрази. Натурален логаритъм, функция ln x

Основните свойства на естествения логаритъм, графика, дефиниционна област, набор от стойности, основни формули, производна, интеграл, разширение в степенни редовеи представяне на функцията ln x с помощта на комплексни числа.

Определение

Натурален логаритъме функцията y = в х, обратното на експоненциала, x = e y, и е логаритъм при основата на числото e: ln x = log e x.

Натуралният логаритъм се използва широко в математиката, тъй като неговата производна има най-простата форма: (ln x)′ = 1/ x.

Въз основа на дефиниции, основата на естествения логаритъм е числото д:
e ≅ 2,718281828459045...;
.

Графика на функцията y = в х.

Графика на натурален логаритъм (функции y = в х) се получава от експоненциалната графика чрез огледално отражение спрямо правата линия y = x.

Натуралният логаритъм се определя за положителни стойности на променливата x.

Той се увеличава монотонно в своята област на дефиниране. 0 При x →

границата на естествения логаритъм е минус безкрайност (-∞). Когато x → + ∞, границата на естествения логаритъм е плюс безкрайност (+ ∞). За голямо x логаритъма нараства доста бавно. Всякаквистепенна функция

x a с положителен показател a расте по-бързо от логаритъма.

Свойства на естествения логаритъм

Натуралният логаритъм е монотонно нарастваща функция, така че няма екстремуми. Основните свойства на натуралния логаритъм са представени в таблицата.

ln x стойности

ln 1 = 0

Основни формули за естествени логаритми

Формули, следващи от дефиницията на обратната функция:

Основното свойство на логаритмите и последствията от него

Формула за заместване на основата

Всеки логаритъм може да бъде изразен чрез естествени логаритми, като се използва формулата за заместване на основата:

Доказателствата на тези формули са представени в раздела "Логаритъм".

Обратна функция

Обратният на естествения логаритъм е степента.

Ако , тогава

Ако, тогава.

Производна ln x

Производна на натурален логаритъм:
.
Производна на натурален логаритъм от модул x:
.
Производна от n-ти ред:
.
Извличане на формули >>>

Интеграл

Интегралът се изчислява чрез интегриране по части:
.
така че

Изрази, използващи комплексни числа

Разгледайте функцията на комплексната променлива z:
.
Нека изразим комплексната променлива zчрез модул rи аргумент φ :
.
Използвайки свойствата на логаритъма, имаме:
.
или
.
Аргументът φ не е еднозначно дефиниран. Ако поставите
, където n е цяло число,
ще бъде едно и също число за различни n.

Следователно натуралният логаритъм, като функция на комплексна променлива, не е еднозначна функция.

Разширение на степенни редове

Когато се извършва разширяването:

Използвана литература:
И.Н. Бронщайн, К.А. Семендяев, Наръчник по математика за инженери и студенти, “Лан”, 2009 г.

Логаритмите, като всички числа, могат да се събират, изваждат и трансформират по всякакъв начин. Но тъй като логаритмите не са съвсем обикновени числа, тук има правила, които се наричат основни свойства.

Определено трябва да знаете тези правила - без тях нито един сериозен проблем не може да бъде решен. логаритмична задача. Освен това има много малко от тях - можете да научите всичко за един ден. Така че да започваме.

Събиране и изваждане на логаритми

Помислете за два логаритма с еднакви основи: log а хи дневник а г. След това те могат да се събират и изваждат и:

  1. дневник а х+ дневник а г=дневник а (х · г);
  2. дневник а х− дневник а г=дневник а (х : г).

И така, сумата от логаритми е равна на логаритъма от произведението, а разликата е равна на логаритъма от частното. Моля, обърнете внимание: ключовият момент тук е идентични основания. Ако причините са различни, тези правила не работят!

Тези формули ще ви помогнат да изчислите логаритмичен израздори когато отделните му части не се броят (вижте урока „Какво е логаритъм“). Разгледайте примерите и вижте:

Log 6 4 + log 6 9.

Тъй като логаритмите имат еднакви основи, използваме формулата за сумиране:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Задача. Намерете стойността на израза: log 2 48 − log 2 3.

Базите са еднакви, използваме формулата за разликата:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Задача. Намерете стойността на израза: log 3 135 − log 3 5.

Отново основите са същите, така че имаме:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Както можете да видите, оригиналните изрази са съставени от „лоши“ логаритми, които не се изчисляват отделно. Но след трансформациите се получават напълно нормални числа. Много от тях са изградени върху този факт тестове. Да, изрази, подобни на тестове, се предлагат напълно сериозно (понякога почти без промени) на Единния държавен изпит.

Извличане на показателя от логаритъма

Сега нека усложним малко задачата. Ами ако основата или аргументът на логаритъм е степен? Тогава показателят на тази степен може да бъде изваден от знака на логаритъма съгласно следните правила:

Лесно се вижда, че последното правило следва първите две. Но все пак е по-добре да го запомните - в някои случаи това значително ще намали количеството на изчисленията.

Разбира се, всички тези правила имат смисъл, ако се спазва ODZ на логаритъма: а > 0, а ≠ 1, х> 0. И още нещо: научете се да прилагате всички формули не само отляво надясно, но и обратно, т.е. Можете да въведете числата преди знака за логаритъм в самия логаритъм. Това е, което най-често се изисква.

Задача. Намерете стойността на израза: log 7 49 6 .

Нека се отървем от степента в аргумента, използвайки първата формула:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Задача. Намерете значението на израза:

[Надпис към снимката]

Обърнете внимание, че знаменателят съдържа логаритъм, чиято основа и аргумент са точни степени: 16 = 2 4 ; 49 = 7 2. Ние имаме:

[Надпис към снимката]

Мисля, че последният пример изисква известно пояснение. Къде изчезнаха логаритмите? До последния момент работим само със знаменателя. Представихме основата и аргумента на логаритъма, който стои там под формата на степени и извадихме показателите - получихме "триетажна" дроб.

Сега нека разгледаме основната фракция. Числителят и знаменателят съдържат едно и също число: log 2 7. Тъй като log 2 7 ≠ 0, можем да намалим дробта - 2/4 ще остане в знаменателя. Според правилата на аритметиката четворката може да се прехвърли в числителя, което и беше направено. Резултатът беше отговорът: 2.

Преход към нова основа

Говорейки за правилата за събиране и изваждане на логаритми, специално подчертах, че те работят само с еднакви основи. Ами ако причините са различни? Ами ако не са точни степени на едно и също число?

Формулите за преход към нова основа идват на помощ. Нека ги формулираме под формата на теорема:

Нека логаритъмът е даден а х. След това за произволен номер cтакова, че c> 0 и c≠ 1, равенството е вярно:

[Надпис към снимката]

По-специално, ако поставим c = х, получаваме:

[Надпис към снимката]

От втората формула следва, че основата и аргументът на логаритъма могат да се разменят, но в този случай целият израз се „обръща“, т.е. логаритъма се появява в знаменателя.

Тези формули рядко се срещат в обикновени числови изрази. Възможно е да се оцени колко са удобни само като се реши логаритмични уравненияи неравенства.

Има обаче проблеми, които изобщо не могат да бъдат решени, освен чрез преминаване към нова основа. Нека да разгледаме няколко от тях:

Задача. Намерете стойността на израза: log 5 16 log 2 25.

Обърнете внимание, че аргументите на двата логаритма съдържат точни степени. Нека извадим индикаторите: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Сега нека "обърнем" втория логаритъм:

[Надпис към снимката]

Тъй като продуктът не се променя при пренареждане на множителите, ние спокойно умножихме четири и две и след това се справихме с логаритмите.

Задача. Намерете стойността на израза: log 9 100 lg 3.

Основата и аргументът на първия логаритъм са точни степени. Нека запишем това и да се отървем от индикаторите:

[Надпис към снимката]

Сега нека се отървем от десетичния логаритъм, като преминем към нова основа:

[Надпис към снимката]

Основно логаритмично тъждество

Често в процеса на решаване е необходимо да се представи число като логаритъм на дадена основа. В този случай ще ни помогнат следните формули:

В първия случай броят пстава индикатор за степента на позиция в спора. Номер пможе да бъде абсолютно всичко, защото това е просто логаритъм.

Втората формула всъщност е перифразирана дефиниция. Това се нарича: основна логаритмична идентичност.

Всъщност какво ще се случи, ако броят bповдигнете до такава степен, че числото bна тази степен дава числото а? Точно така: получавате същото число а. Прочетете внимателно този параграф отново - много хора се забиват в него.

Подобно на формулите за преминаване към нова база, основното логаритмично тъждество понякога е единственото възможно решение.

Задача. Намерете значението на израза:

[Надпис към снимката]

Обърнете внимание, че log 25 64 = log 5 8 - просто взе квадрат от основата и аргумента на логаритъма. Като вземем предвид правилата за умножение на степени с една и съща основа, получаваме:

[Надпис към снимката]

Ако някой не знае, това беше истинска задача от Единния държавен изпит :)

Логаритмична единица и логаритмична нула

В заключение ще дам две тъждества, които трудно могат да бъдат наречени свойства - по-скоро те са следствия от дефиницията на логаритъма. Те постоянно се появяват в проблеми и, изненадващо, създават проблеми дори за „напреднали“ ученици.

  1. дневник а а= 1 е логаритмична единица. Запомнете веднъж завинаги: логаритъм по произволна основа аот същата тази основа е равно на едно.
  2. дневник а 1 = 0 е логаритмична нула. База аможе да бъде всичко, но ако аргументът съдържа единица, логаритъма е равен на нула! защото а 0 = 1 е пряко следствие от определението.

Това са всички имоти. Не забравяйте да се упражнявате да ги прилагате на практика! Изтеглете измамника в началото на урока, разпечатайте го и решете задачите.

Логаритмични изрази, решаване на примери. В тази статия ще разгледаме проблеми, свързани с решаването на логаритми. Задачите поставят въпроса за намиране на значението на израз. Трябва да се отбележи, че понятието логаритъм се използва в много задачи и разбирането на значението му е изключително важно. Що се отнася до Единния държавен изпит, логаритъмът се използва при решаване на уравнения, в приложни задачи, а също и в задачи, свързани с изучаването на функции.

Нека дадем примери, за да разберем самото значение на логаритъма:


Основна логаритмична идентичност:

Свойства на логаритмите, които винаги трябва да се запомнят:

*Логаритъмът на произведението е равен на сумата от логаритмите на факторите.

* * *

*Логаритъмът на частното (дроб) е равен на разликата между логаритмите на факторите.

* * *

*Логаритъмът на степенна степен е равен на произведението на степенната степен и логаритъма на нейната основа.

* * *

*Преминаване към нова основа

* * *

Още имоти:

* * *

Изчисляването на логаритми е тясно свързано с използването на свойствата на показателите.

Нека изброим някои от тях:

Същността от този имотсе крие във факта, че при прехвърляне на числителя към знаменателя и обратно, знакът на експонента се променя на противоположния. Например:

Следствие от това свойство:

* * *

При повишаване на степен на степен основата остава същата, но показателите се умножават.

* * *

Както видяхте, самата концепция за логаритъм е проста. Основното е това, което е необходимо добра практика, което дава определено умение. Разбира се, изисква се познаване на формулите. Ако умението за преобразуване на елементарни логаритми не е развито, тогава при решаване на прости задачи лесно можете да направите грешка.

Практикувайте, решавайте първо най-простите примери от курса по математика, след това преминете към по-сложните. В бъдеще определено ще покажа как се решават "грозни" логаритми; няма да има такива на Единния държавен изпит, но те представляват интерес, не го пропускайте!

Това е всичко! Успех на теб!

С уважение, Александър Крутицких

P.S: Ще съм благодарен, ако ми разкажете за сайта в социалните мрежи.

    Да започнем с свойства на логаритъма от едно. Неговата формулировка е следната: логаритъмът от единица е равен на нула, т.е. log a 1=0за всяко a>0, a≠1. Доказателството не е трудно: тъй като a 0 =1 за всяко a, удовлетворяващо горните условия a>0 и a≠1, тогава равенството log a 1=0, което трябва да се докаже, следва непосредствено от дефиницията на логаритъма.

    Нека дадем примери за приложението на разглежданото свойство: log 3 1=0, log1=0 и .

    Да преминем към следващото свойство: логаритъма на число, равно на основата, е равен на единица, тоест log a a=1за a>0, a≠1. Наистина, тъй като a 1 =a за всяко a, тогава по дефиниция на логаритъма log a a=1.

    Примери за използване на това свойство на логаритмите са равенствата log 5 5=1, log 5.6 5.6 и lne=1.

    Например log 2 2 7 =7, log10 -4 =-4 и .

    Логаритъм от произведението на две положителни числа x и y е равно на произведението на логаритмите на тези числа: log a (x y)=log a x+log a y, a>0 , a≠1 . Нека докажем свойството на логаритъма на произведение. Поради свойствата на степента a log a x+log a y =a log a x ·a log a y, и тъй като чрез основното логаритмично тъждество a log a x =x и a log a y =y, тогава a log a x ·a log a y =x·y. Така, a log a x+log a y =x·y, от което по дефиницията на логаритъм следва доказваното равенство.

    Нека покажем примери за използване на свойството на логаритъма на продукт: log 5 (2 3)=log 5 2+log 5 3 и .

    Свойството на логаритъм на произведение може да се обобщи до произведението на крайно число n от положителни числа x 1 , x 2 , …, x n като log a (x 1 ·x 2 ·…·x n)= log a x 1 +log a x 2 +...+log a x n . Това равенство може да се докаже без проблеми.

    Например, естественият логаритъм на продукт може да бъде заменен със сбора от три естествени логаритмичислата 4, e и.

    Логаритъм от частното на две положителни числа x и y е равно на разликата между логаритмите на тези числа. Свойството логаритъм на частно съответства на формула от вида , където a>0, a≠1, x и y са някои положителни числа. Валидността на тази формула е доказана, както и на формулата за логаритъм на произведение: тъй като , тогава по дефиниция на логаритъм.

    Ето пример за използване на това свойство на логаритъма: .

    Да преминем към свойство на логаритъма на степента. Логаритъмът на степента е равен на произведението на степента и логаритъма на модула на основата на тази степен. Нека запишем това свойство на логаритъма на степен като формула: log a b p =p·log a |b|, където a>0, a≠1, b и p са такива числа, че степента b p има смисъл и b p >0.

    Първо доказваме това свойство за положително b. Основното логаритмично тъждество ни позволява да представим числото b като log a b , тогава b p =(a log a b) p и полученият израз, поради свойството степен, е равен на a p·log a b . Така стигаме до равенството b p =a p·log a b, от което по дефиницията на логаритъм заключаваме, че log a b p =p·log a b.

    Остава да докажем това свойство за отрицателно b. Тук отбелязваме, че изразът log a b p за отрицателно b има смисъл само за четни показатели p (тъй като стойността на степента b p трябва да е по-голяма от нула, в противен случай логаритъма няма да има смисъл), и в този случай b p =|b| стр. Тогава b p =|b| p =(a log a |b|) p =a p·log a |b|, от където log a b p =p·log a |b| .

    например, и ln(-3) 4 =4·ln|-3|=4·ln3 .

    Следва от предишното свойство свойство на логаритъма от корена: логаритъма на n-тия корен е равен на произведението на дробта 1/n по логаритъма на радикалния израз, т.е. , където a>0, a≠1, n – естествено число, по-голямо от едно, b>0.

    Доказателството се основава на равенството (виж), което е валидно за всяко положително b, и свойството на логаритъма на степента: .

    Ето пример за използване на това свойство: .

    Сега да докажем формула за преминаване към нова основа на логаритъмвид . За целта е достатъчно да се докаже валидността на равенството log c b=log a b·log c a. Основната логаритмична идентичност ни позволява да представим числото b като log a b, след което log c b=log c a log a b. Остава да използваме свойството на логаритъма на степента: log c a log a b =log a b log c a. Това доказва равенството log c b=log a b·log c a, което означава, че формулата за преминаване към нова основа на логаритъм също е доказана.

    Нека да покажем няколко примера за използване на това свойство на логаритмите: и .

    Формулата за преминаване към нова база ви позволява да преминете към работа с логаритми, които имат „удобна“ база. Например, може да се използва за преминаване към естествени или десетични логаритми, така че да можете да изчислите стойността на логаритъм от таблица с логаритми. Формулата за преминаване към нова логаритъмна основа също позволява в някои случаи да се намери стойността на даден логаритъм, когато са известни стойностите на някои логаритми с други бази.

    Често се използва частен случай на формулата за преход към нова основа на логаритъм за c=b на формата . Това показва, че log a b и log b a – . например, .

    Формулата също се използва често , което е удобно за намиране на логаритмични стойности. За да потвърдим думите си, ще покажем как може да се използва за изчисляване на стойността на логаритъм от формата . Имаме . За доказване на формулата достатъчно е да използвате формулата за преход към нова основа на логаритъма a: .

    Остава да се докажат свойствата на сравнение на логаритми.

    Нека докажем, че за всякакви положителни числа b 1 и b 2, b 1 log a b 2 , а при a>1 – неравенството log a b 1

    Накрая остава да докажем последното от изброените свойства на логаритмите. Нека се ограничим до доказателството на първата му част, тоест ще докажем, че ако a 1 >1, a 2 >1 и a 1 1 е вярно log a 1 b>log a 2 b . Останалите твърдения на това свойство на логаритмите се доказват по подобен принцип.

    Нека използваме обратния метод. Да предположим, че за a 1 >1, a 2 >1 и a 1 1 е вярно log a 1 b≤log a 2 b . Въз основа на свойствата на логаритмите, тези неравенства могат да бъдат пренаписани като и съответно и от тях следва, че log b a 1 ≤log b a 2 и съответно log b a 1 ≥log b a 2. Тогава, според свойствата на степените с еднакви основи, трябва да са валидни равенствата b log b a 1 ≥b log b a 2 и b log b a 1 ≥b log b a 2, тоест a 1 ≥a 2 . Така че стигнахме до противоречие с условието a 1

Референции.

  • Колмогоров A.N., Абрамов A.M., Дудницин Ю.П. и др.. Алгебра и началото на анализа: Учебник за 10 - 11 клас на общообразователните институции.
  • Гусев В.А., Мордкович А.Г. Математика (наръчник за постъпващите в технически училища).

Продължаваме да изучаваме логаритми. В тази статия ще говорим за изчисляване на логаритми, този процес се нарича логаритъм. Първо ще разберем изчисляването на логаритмите по дефиниция. След това нека да разгледаме как се намират стойностите на логаритмите с помощта на техните свойства. След това ще се съсредоточим върху изчисляването на логаритми чрез първоначално посочените стойности на други логаритми. И накрая, нека научим как да използваме логаритмични таблици. Цялата теория е снабдена с примери с подробни решения.

Навигация в страницата.

Изчисляване на логаритми по дефиниция

В най-простите случаи е възможно да се изпълни доста бързо и лесно намиране на логаритъм по дефиниция. Нека да разгледаме по-отблизо как се случва този процес.

Същността му е да представи числото b във формата a c, от което по дефиницията на логаритъм числото c е стойността на логаритъма. Тоест, по дефиниция, следната верига от равенства съответства на намирането на логаритъм: log a b=log a a c =c.

И така, изчисляването на логаритъм по дефиниция се свежда до намиране на число c, така че a c = b, а самото число c е желаната стойност на логаритъма.

Като вземете предвид информацията в предишните параграфи, когато числото под знака на логаритъма е дадено от определена степен на основата на логаритъма, можете веднага да посочите на какво е равен логаритъма - той е равен на степента. Нека покажем решения на примери.

Пример.

Намерете log 2 2 −3 и също изчислете натурален логаритъм на числото e 5,3.

Решение.

Дефиницията на логаритъма ни позволява веднага да кажем, че log 2 2 −3 =−3. Наистина, числото под знака на логаритъма е равно на основа 2 на степен −3.

По подобен начин намираме втория логаритъм: lne 5,3 =5,3.

отговор:

log 2 2 −3 =−3 и lne 5,3 =5,3.

Ако числото b под знака за логаритъм не е посочено като степен на основата на логаритъма, тогава трябва внимателно да погледнете дали е възможно да излезете с представяне на числото b във формата a c . Често това представяне е съвсем очевидно, особено когато числото под знака на логаритъма е равно на основата на степен 1, или 2, или 3, ...

Пример.

Изчислете логаритмите log 5 25 и .

Решение.

Лесно се вижда, че 25=5 2, това ви позволява да изчислите първия логаритъм: log 5 25=log 5 5 2 =2.

Нека да преминем към изчисляване на втория логаритъм. Числото може да бъде представено като степен на 7: (вижте ако е необходимо). следователно .

Нека пренапишем третия логаритъм в следната форма. Сега можете да видите това , от което правим извода, че . Следователно, по дефиницията на логаритъм .

Накратко решението може да се напише по следния начин: .

отговор:

log 5 25=2 , и .

Когато има достатъчно голямо естествено число под знака на логаритъма, няма да навреди да го разложите на прости множители. Често помага да се представи такова число като някаква степен на основата на логаритъма и следователно да се изчисли този логаритъм по дефиниция.

Пример.

Намерете стойността на логаритъма.

Решение.

Някои свойства на логаритмите ви позволяват незабавно да посочите стойността на логаритмите. Тези свойства включват свойството на логаритъм от единица и свойството на логаритъм на число, равно на основата: log 1 1=log a a 0 =0 и log a a=log a a 1 =1. Тоест, когато под знака за логаритъм стои число 1 или число а, равно на основата на логаритъма, то в тези случаи логаритмите са равни съответно на 0 и 1.

Пример.

На какво са равни логаритми и log10?

Решение.

Тъй като , тогава от дефиницията на логаритъм следва .

Във втория пример числото 10 под знака за логаритъм съвпада с основата си, така че десетичният логаритъм от десет е равен на единица, тоест lg10=lg10 1 =1.

отговор:

И lg10=1 .

Имайте предвид, че изчисляването на логаритми по дефиниция (което обсъдихме в предишния параграф) предполага използването на равенството log a a p =p, което е едно от свойствата на логаритмите.

На практика, когато число под знака на логаритъма и основата на логаритъма лесно се представят като степен на определено число, е много удобно да се използва формулата , което съответства на едно от свойствата на логаритмите. Нека разгледаме пример за намиране на логаритъм, илюстриращ използването на тази формула.

Пример.

Изчислете логаритъма.

Решение.

отговор:

.

Свойствата на логаритмите, които не са споменати по-горе, също се използват в изчисленията, но ще говорим за това в следващите параграфи.

Намиране на логаритми чрез други известни логаритми

Информацията в този параграф продължава темата за използването на свойствата на логаритмите при изчисляването им. Но тук основната разлика е, че свойствата на логаритмите се използват за изразяване на оригиналния логаритъм чрез друг логаритъм, чиято стойност е известна. Нека дадем пример за пояснение. Да кажем, че знаем, че log 2 3≈1,584963, тогава можем да намерим, например, log 2 6, като направим малка трансформация, използвайки свойствата на логаритъма: log 2 6=log 2 (2 3)=log 2 2+log 2 3≈ 1+1,584963=2,584963 .

В горния пример за нас беше достатъчно да използваме свойството логаритъм на произведение. Много по-често обаче е необходимо да се използва по-широк арсенал от свойства на логаритми, за да се изчисли оригиналният логаритъм чрез дадените.

Пример.

Изчислете логаритъма от 27 при основа 60, ако знаете, че log 60 2=a и log 60 5=b.

Решение.

Така че трябва да намерим log 60 27 . Лесно се вижда, че 27 = 3 3 и първоначалният логаритъм, поради свойството на логаритъм на степента, може да бъде пренаписан като 3·log 60 3.

Сега нека видим как да изразим log 60 3 по отношение на известни логаритми. Свойството на логаритъм на число, равно на основата, ни позволява да запишем логаритъм на равенство 60 60=1. От друга страна, log 60 60=log60(2 2 3 5)= log 60 2 2 +log 60 3+log 60 5= 2·log 60 2+log 60 3+log 60 5 . по този начин 2 log 60 2+log 60 3+log 60 5=1. следователно log 60 3=1−2·log 60 2−log 60 5=1−2·a−b.

Накрая изчисляваме първоначалния логаритъм: log 60 27=3 log 60 3= 3·(1−2·a−b)=3−6·a−3·b.

отговор:

log 60 27=3·(1−2·a−b)=3−6·a−3·b.

Отделно си струва да споменем значението на формулата за преход към нова основа на логаритъма на формата . Тя ви позволява да преминете от логаритми с произволна основа към логаритми с конкретна основа, чиито стойности са известни или е възможно да ги намерите. Обикновено от оригиналния логаритъм, използвайки формулата за преход, те преминават към логаритми в една от базите 2, e или 10, тъй като за тези бази има таблици с логаритми, които позволяват техните стойности да бъдат изчислени с определена степен на точност. В следващия параграф ще покажем как се прави това.

Логаритмични таблици и тяхното използване

За приблизително изчисляване на логаритъм могат да се използват стойности логаритмични таблици. Най-често използваната таблица с логаритъм с основа 2, таблица с естествен логаритъм и таблица с десетичен логаритъм. Когато работите в десетичната бройна система, е удобно да използвате таблица с логаритми, базирана на база десет. С негова помощ ще се научим да намираме стойностите на логаритмите.










Представената таблица ви позволява да намерите стойностите на десетичните логаритми на числата от 1000 до 9999 (с три знака след десетичната запетая) с точност до една десет хилядна. Ще анализираме принципа за намиране на стойността на логаритъм с помощта на таблица с десетични логаритми, използвайки конкретен пример - така е по-ясно. Нека намерим log1.256.

В лявата колона на таблицата с десетични логаритми намираме първите две цифри на числото 1,256, тоест намираме 1,2 (това число е оградено в синьо за яснота). Третата цифра на числото 1.256 (цифра 5) се намира в първия или последния ред вляво от двойната линия (това число е оградено в червено). Четвъртата цифра от оригиналното число 1.256 (цифра 6) се намира в първия или последния ред вдясно от двойната линия (това число е оградено със зелена линия). Сега намираме числата в клетките на логаритмичната таблица в пресечната точка на маркирания ред и маркираните колони (тези числа са маркирани в оранжево). Сумата от маркираните числа дава желаната стойност на десетичния логаритъм с точност до четвъртия знак след десетичната запетая, т.е. log1.236≈0.0969+0.0021=0.0990.

Възможно ли е, като използвате таблицата по-горе, да намерите стойностите на десетични логаритми на числа, които имат повече от три цифри след десетичната запетая, както и тези, които надхвърлят диапазона от 1 до 9,999? Да, можеш. Нека покажем как става това с пример.

Нека изчислим lg102,76332. Първо трябва да запишете номер в стандартна форма: 102,76332=1,0276332·10 2. След това мантисата трябва да бъде закръглена до третия знак след десетичната запетая, имаме 1,0276332 10 2 ≈1,028 10 2, докато първоначалният десетичен логаритъм е приблизително равен на логаритъма на полученото число, т.е. вземаме log102,76332≈lg1,028·10 2. Сега прилагаме свойствата на логаритъма: lg1.028·10 2 =lg1.028+lg10 2 =lg1.028+2. Накрая намираме стойността на логаритъма lg1.028 от таблицата с десетични логаритми lg1.028≈0.0086+0.0034=0.012. В резултат на това целият процес на изчисляване на логаритъма изглежда така: log102.76332=log1.0276332 10 2 ≈lg1.028 10 2 = log1.028+lg10 2 =log1.028+2≈0.012+2=2.012.

В заключение си струва да се отбележи, че с помощта на таблица с десетични логаритми можете да изчислите приблизителната стойност на всеки логаритъм. За да направите това, достатъчно е да използвате формулата за преход, за да отидете до десетични логаритми, да намерите техните стойности в таблицата и да извършите останалите изчисления.

Например, нека изчислим log 2 3 . Според формулата за преход към нова основа на логаритъма имаме . От таблицата с десетични логаритми намираме log3≈0,4771 и log2≈0,3010. по този начин .

Референции.

  • Колмогоров A.N., Абрамов A.M., Дудницин Ю.П. и др.. Алгебра и началото на анализа: Учебник за 10 - 11 клас на общообразователните институции.
  • Гусев В.А., Мордкович А.Г. Математика (наръчник за постъпващите в технически училища).

Публикации по темата