Най-простите елементарни функции и техните свойства. Основни свойства на функциите

    1) Функционална област и функционален диапазон.

    Домейнът на функция е набор от всички валидни валидни стойности на аргументи х(променлива х), за която функцията y = f(x)определен. Диапазонът на функция е множеството от всички реални стойности г, които функцията приема.

    В елементарната математика функциите се изучават само върху множеството от реални числа.

    2) Функционални нули.

    Функция нула е стойността на аргумента, при която стойността на функцията е равна на нула.

    3) Интервали с постоянен знак на функция.

    Интервалите с постоянен знак на функция са набори от стойности на аргументи, при които стойностите на функцията са само положителни или само отрицателни.

    4) Монотонност на функцията.

    Нарастваща функция (в определен интервал) е функция, при която по-голяма стойност на аргумента от този интервал съответства на по-голяма стойност на функцията.

    Намаляваща функция (в определен интервал) е функция, при която на по-голяма стойност на аргумента от този интервал съответства по-малка стойност на функцията.

    5) Четна (нечетна) функция.

    Четна функция е функция, чиято област на дефиниция е симетрична по отношение на произхода и за всяко хот областта на дефиницията равенството f(-x) = f(x).

    Графиката на четна функция е симетрична спрямо ординатата. хот областта на дефиницията равенството е вярно f(-x) = - f(x).

    Графиката на нечетна функция е симетрична спрямо началото..

    6) Ограничени и неограничени функции

    Една функция се нарича ограничена, ако има положително число M такова, че |f(x)| ≤ M за всички стойности на x. Ако такъв номер не съществува, тогава функцията е неограничена..

    7) Периодичност на функцията

    Функция f(x) е периодична, ако има ненулево число T, така че за всяко x от областта на дефиниране на функцията е валидно следното: f(x+T) = f(x). Това най-малко число се нарича период на функцията. Всички тригонометрични функции са периодични. (Тригонометрични формули). 19. Основенелементарни функции

, техните свойства и графики. Приложение на функциите в икономиката.

Основни елементарни функции. Техните свойства и графики

1. Линейна функция. Линейна функция

се нарича функция от формата , където x е променлива, a и b са реални числа. НомерА

наречен наклон на правата, той е равен на тангенса на ъгъла на наклона на тази линия към положителната посока на абсцисната ос. Графиката на линейна функция е права линия. Определя се от две точки.

Свойства на линейна функция

1. Област на дефиниция - множеството от всички реални числа: D(y)=R

2. Наборът от стойности е наборът от всички реални числа: E(y)=R

3. Функцията приема нулева стойност, когато или.

4. Функцията расте (намалява) по цялата област на дефиниране.

5. Линейната функция е непрекъсната по цялата област на дефиниция, диференцируема и .

2. Квадратна функция. Функция от вида, където x е променлива, коефициентите a, b, c са реални числа, се нарича

квадратна.

Поддържането на вашата поверителност е важно за нас. Поради тази причина разработихме Политика за поверителност, която описва как използваме и съхраняваме вашата информация. Моля, прегледайте нашите практики за поверителност и ни уведомете, ако имате въпроси.

Събиране и използване на лична информация

Личната информация се отнася до данни, които могат да бъдат използвани за идентифициране или контакт с конкретно лице.

Може да бъдете помолени да предоставите вашата лична информация по всяко време, когато се свържете с нас.

По-долу са дадени някои примери за видовете лична информация, която можем да събираме и как можем да използваме тази информация.

  • Когато подадете заявка на сайта, ние може да съберем различна информация, включително вашето име, телефонен номер, адрес електронна пощаи т.н.

Как използваме вашата лична информация:

  • Личната информация, която събираме, ни позволява да се свържем с вас и да ви информираме за уникални предложения, промоции и други събития и предстоящи събития.
  • От време на време може да използваме вашата лична информация, за да изпращаме важни известия и съобщения.
  • Може също така да използваме лична информация за вътрешни цели, като например извършване на одити, анализ на данни и различни изследвания, за да подобрим услугите, които предоставяме, и да ви предоставим препоръки относно нашите услуги.
  • Ако участвате в теглене на награди, конкурс или подобна промоция, ние може да използваме предоставената от вас информация за администриране на такива програми.

Разкриване на информация на трети лица

Ние не разкриваме информацията, получена от вас, на трети страни.

Изключения:

  • При необходимост - в съответствие със закона, съдебната процедура, съдебното производство и/или въз основа на публични искания или искания от правителствени агенциина територията на Руската федерация - разкрийте вашата лична информация. Може също така да разкрием информация за вас, ако преценим, че такова разкриване е необходимо или подходящо за целите на сигурността, правоприлагането или други обществено значими цели.
  • В случай на реорганизация, сливане или продажба, можем да прехвърлим личната информация, която събираме, на съответната трета страна приемник.

Защита на личната информация

Ние вземаме предпазни мерки – включително административни, технически и физически – за да защитим вашата лична информация от загуба, кражба и злоупотреба, както и неоторизиран достъп, разкриване, промяна и унищожаване.

Зачитане на вашата поверителност на фирмено ниво

За да гарантираме, че вашата лична информация е защитена, ние съобщаваме стандартите за поверителност и сигурност на нашите служители и стриктно прилагаме практиките за поверителност.

Определение: Числовата функция е съответствие, което свързва всяко число x от дадено множество единствено числог.

Обозначаване:

където x е независимата променлива (аргумент), y е зависимата променлива (функция). Наборът от стойности на x се нарича домейн на функцията (обозначава се D(f)). Множеството от стойности на y се нарича диапазон от стойности на функцията (обозначава се E(f)). Графиката на функция е набор от точки в равнината с координати (x, f(x))

Методи за задаване на функция.

  1. аналитичен метод (с използване на математическа формула);
  2. табличен метод (с помощта на таблица);
  3. описателен метод (с използване на словесно описание);
  4. графичен метод (с помощта на графика).

Основни свойства на функцията.

1. Четни и нечетни

Функция се извиква дори ако
– областта на дефиниране на функцията е симетрична спрямо нулата
f(-x) = f(x)

Графиката на четната функция е симетрична спрямо оста 0 г

Функция се нарича странна ако
– областта на дефиниране на функцията е симетрична спрямо нулата
– за всяко x от областта на дефиницията f(-x) = –f(x)

Графиката на нечетна функция е симетрична спрямо началото.

2. Честота

Функция f(x) се нарича периодична с период if за всяко x от областта на дефиниция f(x) = f(x+T) = f(x-T) .

Графиката на периодична функция се състои от неограничено повтарящи се идентични фрагменти.

3. Монотонност (нарастваща, намаляваща)

Функцията f(x) нараства върху множеството P, ако за всяко x 1 и x 2 от това множество, така че x 1

Функцията f(x) намалява в множеството P ако за всяко x 1 и x 2 от това множество, така че x 1 f(x 2) .

4. Крайности

Точка X max се нарича максимална точка на функцията f(x), ако за всички x от някакъв околност на X max неравенството f(x) f(X max) е изпълнено.

Стойността Y max =f(X max) се нарича максимум на тази функция.

X max – максимална точка
На макс - максимум

Точка X min се нарича минимална точка на функцията f(x), ако за всички x от някакъв околност на X min е изпълнено неравенството f(x) f(X min).

Стойността Y min =f(X min) се нарича минимум на тази функция.

X min – минимална точка
Y min – минимум

X min , X max – точки на екстремум
Y min , Y max – екстремуми.

5. Нули на функцията

Нулата на функция y = f(x) е стойността на аргумента x, при която функцията става нула: f(x) = 0.

X 1, X 2, X 3 – нули на функцията y = f(x).

Задачи и тестове по темата "Основни свойства на функция"

  • Функционални свойства - Числени функции 9 клас

    Уроци: 2 Задачи: 11 Тестове: 1

  • Свойства на логаритмите - Показателни и логаритмични функции 11 клас

    Уроци: 2 Задачи: 14 Тестове: 1

  • Функция квадратен корен, нейните свойства и графика - Функция корен квадратен. Свойства на корен квадратен 8 клас

    Уроци: 1 Задачи: 9 Тестове: 1

  • Функции - Важни теми за преглед на Единния държавен изпит по математика

    Задачи: 24

  • Основното свойство на алгебричната дроб - Алгебрични дроби. Аритметични действия над алгебрични дроби 8 клас

    Уроци: 3 Задачи: 11 Тестове: 1

След като сте изучавали тази тема, трябва да можете да намерите областта на дефиниране на различни функции, да определите интервалите на монотонност на функция с помощта на графики и да изследвате функциите за четност и нечетност. Нека разгледаме решаването на подобни проблеми, като използваме следните примери.

Примери.

1. Намерете областта на дефиниция на функцията.

Решение:областта на дефиниране на функцията се намира от условието

следователно функцията f(x) е четна.

Отговор:дори

D(f) = [-1; 1] – симетричен спрямо нулата.

2)

следователно функцията не е нито четна, нито нечетна.

Отговор: нито четен, нито нечетен.

The методически материале само за справка и се отнася за широк кръг от теми. Статията предоставя преглед на графики на основни елементарни функции и ги обсъжда най-важният въпроскак да изградите графика правилно и БЪРЗО. В хода на изучаване на висша математика без познаване на графиките на основните елементарни функции ще бъде трудно, така че е много важно да запомните как изглеждат графиките на парабола, хипербола, синус, косинус и т.н. и да запомните някои от значенията на функциите. Също Ще говоримза някои свойства на основните функции.

Не претендирам за изчерпателност и научна задълбоченост на материалите, акцентът ще бъде поставен преди всичко върху практиката - онези неща, с които човек се среща буквално на всяка крачка, във всяка тема от висшата математика. Графики за манекени? Може да се каже и това.

Поради многобройни искания от читатели съдържание, върху което може да се кликне:

Освен това има ултра кратък синопсис по темата
– овладейте 16 вида диаграми, като изучавате ШЕСТ страници!

Сериозно, шест, дори аз бях изненадан. Това резюме съдържа подобрена графика и се предлага срещу номинална такса, може да се види демо версия. Удобно е да отпечатате файла, така че графиките да са винаги под ръка. Благодаря за подкрепата на проекта!

И да започнем веднага:

Как правилно да конструираме координатни оси?

На практика контролните работи почти винаги се попълват от учениците в отделни тетрадки, подредени в квадрат. Защо се нуждаете от карирана маркировка? В крайна сметка работата по принцип може да се извърши на листове А4. И клетката е необходима точно за висококачествени и точни рисунки.

Всеки чертеж на функционална графика започва с координатни оси.

Чертежите могат да бъдат двуизмерни и триизмерни.

Нека първо разгледаме двумерния случай Декартова правоъгълна координатна система:

1) Начертайте координатни оси. Оста се нарича ос х , а оста е у-ос . Винаги се опитваме да ги нарисуваме спретнат и не крив. Стрелките също не трябва да приличат на брадата на татко Карло.

2) Подписваме осите с големи букви „X“ и „Y“. Не забравяйте да обозначите осите.

3) Задайте скалата по осите: нарисувайте нула и две единици. При рисуване най-удобният и често използван мащаб е: 1 единица = 2 клетки (чертеж вляво) – при възможност се придържайте към него. От време на време обаче се случва рисунката да не пасва лист от тетрадка– след това намаляваме мащаба: 1 единица = 1 клетка (чертеж вдясно). Рядко, но се случва, че мащабът на чертежа трябва да бъде намален (или увеличен) още повече

НЯМА НУЖДА от „картечница“ …-5, -4, -3, -1, 0, 1, 2, 3, 4, 5, ….За координатна равнинане е паметник на Декарт, а ученикът не е гълъб. Ние поставяме нулаИ две единици по осите. Понякога вместоединици, удобно е да „маркирате“ други стойности, например „две“ по абсцисната ос и „три“ по ординатната ос - и тази система (0, 2 и 3) също ще дефинира уникално координатната мрежа.

По-добре е да оцените приблизителните размери на чертежа ПРЕДИ да конструирате чертежа. Така, например, ако задачата изисква начертаване на триъгълник с върхове , , , тогава е напълно ясно, че популярният мащаб 1 единица = 2 клетки няма да работи. Защо? Нека да разгледаме точката - тук ще трябва да измерите петнадесет сантиметра надолу и, очевидно, рисунката няма да се побере (или едва се побере) на лист от тетрадка. Затова веднага избираме по-малък мащаб: 1 единица = 1 клетка.

Между другото, за сантиметри и клетки от тетрадка. Вярно ли е, че 30 клетки от тетрадка съдържат 15 сантиметра? За забавление измерете 15 сантиметра в тетрадката си с линийка. В СССР това може би е било вярно... Интересно е да се отбележи, че ако измерите същите тези сантиметри хоризонтално и вертикално, резултатите (в клетките) ще бъдат различни! Строго погледнато, съвременните тетрадки не са карирани, а правоъгълни. Това може да изглежда глупост, но рисуването, например, на кръг с компас в такива ситуации е много неудобно. Честно казано, в такива моменти започвате да мислите за правотата на другаря Сталин, който беше изпратен в лагери за халтура в производството, да не говорим за местната автомобилна индустрия, падащи самолети или експлодиращи електроцентрали.

Говорейки за качество, или кратка препоръка за канцеларски материали. Днес повечето от продаваните тетрадки са меко казано пълна глупост. Поради причината, че се мокрят и то не само от гел химикалки, но и от химикалки! Те спестяват пари на хартия. За регистрация тестовеПрепоръчвам да използвате тетрадки от Архангелската целулозно-хартиена фабрика (18 листа, квадрат) или „Pyaterochka“, въпреки че е по-скъпо. Препоръчително е да изберете гел химикал, дори най-евтиният китайски гел пълнител е много по-добър от химикалка, която или размазва, или къса хартията. Единствената „конкурентна“ химикалка, която мога да си спомня, е Erich Krause. Тя пише ясно, красиво и последователно – независимо дали с пълно ядро ​​или с почти празно.

Допълнително: Визията за правоъгълна координатна система през очите на аналитичната геометрия е разгледана в статията Линейна (не)зависимост на векторите. Основа на векторите, подробна информация за координатните квартали можете да намерите във втория параграф на урока Линейни неравенства.

3D калъф

Тук е почти същото.

1) Начертайте координатни оси. Стандартен: прилагане на ос – насочена нагоре, ос – насочена надясно, ос – насочена надолу наляво строгопод ъгъл от 45 градуса.

2) Маркирайте осите.

3) Задайте скалата по осите. Мащабът по оста е два пъти по-малък от мащаба по другите оси. Също така имайте предвид, че в десния чертеж използвах нестандартен "прорез" по оста (тази възможност вече беше спомената по-горе). От моя гледна точка това е по-точно, по-бързо и по-естетически приятно - няма нужда да търсите средата на клетката под микроскоп и да „извайвате“ единица, близка до началото на координатите.

Когато правите 3D чертеж, отново дайте приоритет на мащаба
1 единица = 2 клетки (чертеж вляво).

За какво са всички тези правила? Правилата са създадени за да се нарушават. Това ще направя сега. Факт е, че следващите чертежи на статията ще бъдат направени от мен в Excel и координатните оси ще изглеждат неправилни от гледна точка правилен дизайн. Бих могъл да начертая всички графики на ръка, но всъщност е страшно да ги нарисувам, тъй като Excel не желае да ги начертае много по-точно.

Графики и основни свойства на елементарни функции

Линейна функция е дадена от уравнението. Графиката на линейните функции е директен. За да се построи права линия, е достатъчно да се познават две точки.

Пример 1

Постройте графика на функцията. Нека намерим две точки. Изгодно е да изберете нула като една от точките.

Ако , тогава

Да вземем друга точка, например 1.

Ако , тогава

При изпълнение на задачи координатите на точките обикновено се обобщават в таблица:


А самите стойности се изчисляват устно или на чернова, калкулатор.

Намерени са две точки, нека направим чертежа:


Когато изготвяме чертеж, ние винаги подписваме графиките.

Би било полезно да си припомним специални случаи на линейна функция:


Забележете как поставих подписите, подписите не трябва да позволяват несъответствия при изучаване на чертежа. В този случай беше изключително нежелателно да се постави подпис до точката на пресичане на линиите или долу вдясно между графиките.

1) Линейна функция от формата () се нарича пряка пропорционалност. Например, . Графиката на правата пропорционалност винаги минава през началото. Така конструирането на права линия е опростено - достатъчно е да се намери само една точка.

2) Уравнение от формата определя права линия, успоредна на оста, по-специално, самата ос е дадена от уравнението. Графиката на функцията се изгражда веднага, без да се намират точки. Това означава, че записът трябва да се разбира по следния начин: „y винаги е равно на –4 за всяка стойност на x.“

3) Уравнение от формата определя права линия, успоредна на оста, по-специално, самата ос е дадена от уравнението. Графиката на функцията също се изчертава веднага. Записът трябва да се разбира по следния начин: „x винаги, за всяка стойност на y, е равно на 1.“

Някои ще попитат, защо да помним 6 клас?! Така е, може би е така, но през годините на практика срещнах добра дузина студенти, които бяха объркани от задачата да построят графика като или.

Изграждането на права линия е най-често срещаното действие при правене на чертежи.

Правата е разгледана подробно в курса по аналитична геометрия, а интересуващите се могат да се обърнат към статията Уравнение на права на равнина.

Графика на квадратна, кубична функция, графика на полином

Парабола. График квадратична функция () представлява парабола. Помислете за известния случай:

Нека си припомним някои свойства на функцията.

И така, решението на нашето уравнение: – в тази точка се намира върхът на параболата. Защо това е така може да се намери в теоретичната статия за производната и урока за екстремуми на функцията. Междувременно нека изчислим съответната стойност „Y“:

Така върхът е в точката

Сега намираме други точки, докато нагло използваме симетрията на параболата. Трябва да се отбележи, че функцията не е дори, но въпреки това никой не е отменил симетрията на параболата.

В какъв ред да намерите останалите точки, мисля, че ще стане ясно от финалната маса:

Този алгоритъм на изграждане образно може да се нарече „совалка” или принципът „напред и назад” при Анфиса Чехова.

Да направим чертежа:


От разгледаните графики идва на ум още една полезна функция:

За квадратична функция () следното е вярно:

Ако , тогава клоновете на параболата са насочени нагоре.

Ако , тогава клоновете на параболата са насочени надолу.

Задълбочени знания за кривата могат да се получат в урока Хипербола и парабола.

Кубична парабола е дадена от функцията. Ето рисунка, позната от училище:


Нека изброим основните свойства на функцията

Графика на функция

Представлява един от клоновете на парабола. Да направим чертежа:


Основни свойства на функцията:

В този случай оста е вертикална асимптота за графиката на хипербола при .

Би било ГРУБА грешка, ако при съставяне на чертеж небрежно позволите графиката да се пресече с асимптота.

Също така едностранните граници ни казват, че хиперболата не се ограничава отгореИ не се ограничава отдолу.

Нека разгледаме функцията в безкрайност: , тоест, ако започнем да се движим по оста наляво (или надясно) до безкрайност, тогава „игрите“ ще бъдат подредена стъпка безкрайно близоприближават нулата и съответно клоновете на хиперболата безкрайно близоприближете се до оста.

Така че оста е хоризонтална асимптота за графиката на функция, ако "x" клони към плюс или минус безкрайност.

Функцията е странно, и следователно хиперболата е симетрична спрямо началото. Този факточевидно от чертежа, освен това лесно се проверява аналитично: .

Графиката на функция от формата () представлява два клона на хипербола.

Ако , тогава хиперболата се намира в първата и третата координатна четвърт(вижте снимката по-горе).

Ако , тогава хиперболата се намира във втората и четвъртата координатна четвърт.

Посоченият модел на пребиваване на хипербола е лесен за анализ от гледна точка на геометрични трансформации на графики.

Пример 3

Конструирайте десния клон на хиперболата

Използваме метода на точково конструиране и е изгодно да изберете стойностите така, че да се делят на цяло:

Да направим чертежа:


Няма да е трудно да се конструира лявото разклонение на хиперболата; странността на функцията ще помогне тук. Грубо казано, в таблицата на точковата конструкция ние мислено добавяме минус към всяко число, поставяме съответните точки и рисуваме втория клон.

Подробна геометрична информация за разглежданата права можете да намерите в статията Хипербола и парабола.

Графика на експоненциална функция

В този раздел веднага ще разгледам експоненциалната функция, тъй като в проблемите на висшата математика в 95% от случаите се появява експоненциалната.

Нека ви напомня, че това е ирационално число: , това ще се изисква при изграждането на графика, която всъщност ще изградя без церемонии. Три точки, може би това е достатъчно:

Нека засега оставим графиката на функцията, повече за нея по-късно.

Основни свойства на функцията:

Функционалните графики и т.н. изглеждат фундаментално еднакви.

Трябва да кажа, че вторият случай се среща по-рядко в практиката, но се среща, затова сметнах за необходимо да го включа в тази статия.

Графика на логаритмична функция

Разгледайте функцията с натурален логаритъм.
Нека направим чертеж точка по точка:

Ако сте забравили какво е логаритъм, моля, вижте учебниците си в училище.

Основни свойства на функцията:

Домейн:

Диапазон от стойности: .

Функцията не е ограничена отгоре: , макар и бавно, но клонът на логаритъма се издига до безкрайност.
Нека разгледаме поведението на функцията близо до нула вдясно: . Така че оста е вертикална асимптота за графиката на функция като "x" клони към нула отдясно.

Задължително е да знаете и запомните типичната стойност на логаритъма: .

По принцип графиката на логаритъма при основа изглежда по същия начин: , , (десетичен логаритъм при основа 10) и т.н. Освен това, колкото по-голяма е основата, толкова по-плоска ще бъде графиката.

Няма да разглеждаме делото, не помня кога последен пътНа тази основа изградих графика. А логаритъмът изглежда е много рядък гост в задачите на висшата математика.

В края на този параграф ще кажа още един факт: Експоненциална функция и логаритмична функция – това са две взаимно обратни функции. Ако погледнете внимателно графиката на логаритъма, можете да видите, че това е същият показател, просто е разположен малко по-различно.

Графики на тригонометрични функции

Откъде започват тригонометричните мъки в училище? вярно От синуса

Нека начертаем функцията

Тази линия се нарича синусоида.

Нека ви напомня, че „пи“ е ирационално число: , а в тригонометрията ви заслепява очите.

Основни свойства на функцията:

Тази функция е периодиченс точка . Какво означава? Нека да разгледаме сегмента. Вляво и вдясно от нея безкрайно се повтаря точно една и съща част от графиката.

Домейн: , тоест за всяка стойност на „x“ има синусова стойност.

Диапазон от стойности: . Функцията е ограничен: , тоест всички „игри“ се намират строго в сегмента .
Това не се случва: или, по-точно, случва се, но тези уравнения нямат решение.

Публикации по темата