Уравнение с USE степени. Какво е експоненциално уравнение и как да го решим

Посетете youtube канала на нашия уебсайт, за да сте в крак с всички нови видео уроци.

Първо, нека си припомним основните формули на степените и техните свойства.

Произведение на число асе среща сам по себе си n пъти, можем да запишем този израз като a a … a=a n

1. a 0 = 1 (a ≠ 0)

3. a n a m = a n + m

4. (a n) m = a nm

5. a n b n = (ab) n

7. a n / a m = a n - m

Степенни или експоненциални уравнения– това са уравнения, в които променливите са в степен (или степен), а основата е число.

Примери за експоненциални уравнения:

IN в този примерчислото 6 е основата, винаги е най-отдолу и променливата хстепен или показател.

Нека дадем още примери за експоненциални уравнения.
2 х *5=10
16 x - 4 x - 6=0

Сега нека да разгледаме как се решават експоненциални уравнения?

Нека вземем едно просто уравнение:

2 x = 2 3

Този пример може да бъде решен дори в главата ви. Вижда се, че x=3. В крайна сметка, за да са равни лявата и дясната страна, трябва да поставите числото 3 вместо x.
Сега нека видим как да формализираме това решение:

2 x = 2 3
х = 3

За да решим такова уравнение, премахнахме идентични основания(тоест двойки) и записах какво е останало, това са степени. Получихме отговора, който търсехме.

Сега нека обобщим нашето решение.

Алгоритъм за решаване на експоненциалното уравнение:
1. Трябва да се провери идентичендали уравнението има основи отдясно и отляво. Ако причините не са същите, търсим варианти за решаване на този пример.
2. След като основите станат еднакви, приравнявамградуса и решете полученото ново уравнение.

Сега нека да разгледаме няколко примера:

Да започнем с нещо просто.

Основите от лявата и дясната страна са равни на числото 2, което означава, че можем да изхвърлим основата и да приравним мощностите им.

x+2=4 Получава се най-простото уравнение.
x=4 – 2
х=2
Отговор: x=2

IN следния примерВижда се, че базите са различни: 3 и 9.

3 3x - 9 x+8 = 0

Първо, преместете деветката от дясната страна, получаваме:

Сега трябва да направите същите основи. Знаем, че 9=32. Нека използваме формулата за степен (a n) m = a nm.

3 3x = (3 2) x+8

Получаваме 9 x+8 =(3 2) x+8 =3 2x+16

3 3x = 3 2x+16 сега можете да видите това в ляво и дясната странаосновите са еднакви и равни на три, което означава, че можем да ги отхвърлим и да приравним степените.

3x=2x+16 получаваме най-простото уравнение
3x - 2x=16
х=16
Отговор: x=16.

Нека разгледаме следния пример:

2 2x+4 - 10 4 x = 2 4

Първо, разглеждаме основите, основи две и четири. И имаме нужда те да бъдат еднакви. Преобразуваме четирите, като използваме формулата (a n) m = a nm.

4 x = (2 2) x = 2 2x

И ние също използваме една формула a n a m = a n + m:

2 2x+4 = 2 2x 2 4

Добавете към уравнението:

2 2x 2 4 - 10 2 2x = 24

Дадохме пример по същите причини. Но други числа 10 и 24 ни притесняват. Какво да правим с тях? Ако се вгледате внимателно, можете да видите, че от лявата страна имаме 2 2x, повтарящи се, и ето отговора - можем да поставим 2 2x извън скоби:

2 2x (2 4 - 10) = 24

Нека изчислим израза в скоби:

2 4 — 10 = 16 — 10 = 6

Разделяме цялото уравнение на 6:

Нека си представим 4=2 2:

2 2x = 2 2 основите са еднакви, изхвърляме ги и приравняваме степените.
2x = 2 е най-простото уравнение. Разделяме го на 2 и получаваме
х = 1
Отговор: x = 1.

Нека решим уравнението:

9 x – 12*3 x +27= 0

Нека трансформираме:
9 x = (3 2) x = 3 2x

Получаваме уравнението:
3 2x - 12 3 x +27 = 0

Нашите основи са еднакви, равни на три. В този пример можете да видите, че първите три имат степен два пъти (2x) от втората (само x). В този случай можете да решите метод на подмяна. Заменяме числото с най-малката степен:

Тогава 3 2x = (3 x) 2 = t 2

Заменяме всички степени x в уравнението с t:

t 2 - 12t+27 = 0
Получаваме квадратно уравнение. Решавайки чрез дискриминанта, получаваме:
D=144-108=36
t 1 = 9
t2 = 3

Връщане към променливата х.

Вземете t 1:
t 1 = 9 = 3 x

следователно

3 х = 9
3 x = 3 2
х 1 = 2

Намерен е един корен. Търсим втория от t 2:
t 2 = 3 = 3 x
3 x = 3 1
х 2 = 1
Отговор: x 1 = 2; х 2 = 1.

На уебсайта можете да задавате всякакви въпроси, които може да имате в раздела ПОМОГНЕТЕ ДА РЕШИТЕ, ние определено ще ви отговорим.

Присъединете се към групата

Този урок е предназначен за тези, които тепърва започват да учат експоненциални уравнения. Както винаги, нека започнем с определението и прости примери.

Ако четете този урок, тогава подозирам, че вече имате поне минимално разбиране на най-простите уравнения - линейни и квадратни: $56x-11=0$; $((x)^(2))+5x+4=0$; $((x)^(2))-12x+32=0$ и т.н. Възможността за решаване на такива конструкции е абсолютно необходима, за да не се „забиете“ в темата, която сега ще бъде обсъдена.

И така, експоненциални уравнения. Нека ви дам няколко примера:

\[((2)^(x))=4;\квад ((5)^(2x-3))=\frac(1)(25);\квад ((9)^(x))=- 3\]

Някои от тях може да ви изглеждат по-сложни, докато други, напротив, са твърде прости. Но всички те имат една важна обща характеристика: тяхната нотация съдържа експоненциалната функция $f\left(x \right)=((a)^(x))$. И така, нека въведем определението:

Експоненциално уравнение е всяко уравнение, съдържащо експоненциална функция, т.е. израз във формата $((a)^(x))$. В допълнение към посочената функция, такива уравнения могат да съдържат всякакви други алгебрични конструкции - полиноми, корени, тригонометрия, логаритми и др.

Добре тогава. Подредихме определението. Сега въпросът е: как да разрешим всички тези глупости? Отговорът е едновременно прост и сложен.

Нека започнем с добрата новина: от моя опит в преподаването на много студенти мога да кажа, че повечето от тях намират експоненциални уравнения много по-лесно от същите логаритми и още повече тригонометрия.

Но има лоша новина: понякога съставителите на задачи за всякакви учебници и изпити са поразени от „вдъхновение“ и техният възпален от наркотици мозък започва да произвежда толкова брутални уравнения, че решаването им става проблематично не само за учениците - дори и за много учители зациклят на такива проблеми.

Все пак да не говорим за тъжни неща. И да се върнем към тези три уравнения, които бяха дадени в самото начало на историята. Нека се опитаме да разрешим всеки от тях.

Първо уравнение: $((2)^(x))=4$. Е, на каква степен трябва да повдигнете числото 2, за да получите числото 4? Вероятно второто? В крайна сметка $((2)^(2))=2\cdot 2=4$ - и получихме правилното числено равенство, т.е. наистина $x=2$. Е, благодаря, Кап, но това уравнение беше толкова просто, че дори моята котка можеше да го реши :)

Нека разгледаме следното уравнение:

\[((5)^(2x-3))=\frac(1)(25)\]

Но тук е малко по-сложно. Много ученици знаят, че $((5)^(2))=25$ е таблицата за умножение. Някои също подозират, че $((5)^(-1))=\frac(1)(5)$ по същество е дефиницията на отрицателни степени (подобно на формулата $((a)^(-n))= \ frac(1)(((a)^(n)))$).

И накрая, само няколко избрани осъзнават, че тези факти могат да бъдат комбинирани и да доведат до следния резултат:

\[\frac(1)(25)=\frac(1)(((5)^(2)))=((5)^(-2))\]

Така нашето първоначално уравнение ще бъде пренаписано, както следва:

\[((5)^(2x-3))=\frac(1)(25)\Дясна стрелка ((5)^(2x-3))=((5)^(-2))\]

Но това вече е напълно разрешимо! Отляво в уравнението има експоненциална функция, отдясно в уравнението има показателна функция, никъде няма нищо друго освен тях. Следователно можем да „изхвърлим“ базите и глупаво да приравним показателите:

Получихме най-простото линейно уравнение, което всеки ученик може да реши само с няколко реда. Добре, в четири реда:

\[\begin(align)& 2x-3=-2 \\& 2x=3-2 \\& 2x=1 \\& x=\frac(1)(2) \\\end(align)\]

Ако не разбирате какво се случва в последните четири реда, не забравяйте да се върнете към темата " линейни уравнения“ и го повторете. Тъй като без ясно разбиране на тази тема, е твърде рано за вас да се заемете с експоненциални уравнения.

\[((9)^(x))=-3\]

И така, как можем да разрешим това? Първа мисъл: $9=3\cdot 3=((3)^(2))$, така че оригиналното уравнение може да бъде пренаписано, както следва:

\[((\left(((3)^(2)) \right))^(x))=-3\]

След това си спомняме, че когато повишаваме степен на степен, показателите се умножават:

\[((\left(((3)^(2)) \right))^(x))=((3)^(2x))\Rightarrow ((3)^(2x))=-(( 3)^(1))\]

\[\begin(align)& 2x=-1 \\& x=-\frac(1)(2) \\\end(align)\]

И за такова решение ще получим честно заслужена двойка. Защото с хладнокръвието на покемон изпратихме знака минус пред тримата на степен на точно това три. Но не можете да направите това. И ето защо. Разгледайте различните сили на три:

\[\begin(matrix) ((3)^(1))=3& ((3)^(-1))=\frac(1)(3)& ((3)^(\frac(1)( 2)))=\sqrt(3) \\ ((3)^(2))=9& ((3)^(-2))=\frac(1)(9)& ((3)^(\ frac(1)(3)))=\sqrt(3) \\ ((3)^(3))=27& ((3)^(-3))=\frac(1)(27)& (( 3)^(-\frac(1)(2)))=\frac(1)(\sqrt(3)) \\\end(matrix)\]

Когато компилирах тази таблетка, не изопачих нищо: разгледах положителните степени, и отрицателните, и дори дробните... е, къде е поне едно отрицателно число тук? Няма го! И не може да бъде, защото експоненциалната функция $y=((a)^(x))$, първо, винаги приема само положителни стойности (без значение колко едно се умножава или дели на две, пак ще бъде положително число), и второ, основата на такава функция - числото $a$ - по дефиниция е положително число!

Е, тогава как да решим уравнението $((9)^(x))=-3$? Но няма как: няма корени. И в този смисъл експоненциалните уравнения са много подобни на квадратните уравнения - също може да няма корени. Но ако в квадратните уравнения броят на корените се определя от дискриминанта (положителен дискриминант - 2 корена, отрицателен - без корени), то в експоненциалните уравнения всичко зависи от това какво е вдясно от знака за равенство.

И така, нека формулираме ключовия извод: най-простото експоненциално уравнение от вида $((a)^(x))=b$ има корен тогава и само ако $b>0$. Познавайки този прост факт, можете лесно да определите дали предложеното ви уравнение има корени или не. Тези. Струва ли си изобщо да го решавате или веднага да запишете, че няма корени.

Това знание ще ни помогне много пъти, когато трябва да решим повече сложни задачи. Засега достатъчно текстове - време е да изучим основния алгоритъм за решаване на експоненциални уравнения.

Как да решаваме експоненциални уравнения

И така, нека формулираме проблема. Необходимо е да се реши експоненциалното уравнение:

\[((a)^(x))=b,\quad a,b>0\]

Според „наивния“ алгоритъм, който използвахме по-рано, е необходимо да представим числото $b$ като степен на числото $a$:

Освен това, ако вместо променливата $x$ има някакъв израз, ще получим ново уравнение, което вече може да бъде решено. Например:

\[\begin(align)& ((2)^(x))=8\Rightarrow ((2)^(x))=((2)^(3))\Rightarrow x=3; \\& ((3)^(-x))=81\Стрелка надясно ((3)^(-x))=((3)^(4))\Стрелка надясно -x=4\Стрелка надясно x=-4; \\& ((5)^(2x))=125\Дясна стрелка ((5)^(2x))=((5)^(3))\Дясна стрелка 2x=3\Дясна стрелка x=\frac(3)( 2). \\\край (подравняване)\]

И колкото и да е странно, тази схема работи в около 90% от случаите. Ами тогава останалите 10%? Останалите 10% са леко „шизофренични“ експоненциални уравнения от вида:

\[((2)^(x))=3;\квад ((5)^(x))=15;\квад ((4)^(2x))=11\]

Добре, на каква степен трябва да повдигнете 2, за да получите 3? първо? Но не: $((2)^(1))=2$ не е достатъчно. Второ? Също така не: $((2)^(2))=4$ е твърде много. Кое тогава?

Знаещите ученици вероятно вече са се досетили: в такива случаи, когато не е възможно да се реши „красиво“, влиза в действие „тежката артилерия“ - логаритмите. Нека ви напомня, че с помощта на логаритми всяко положително число може да бъде представено като степен на всяко друго положително число (с изключение на едно):

Помните ли тази формула? Когато разказвам на учениците си за логаритми, винаги предупреждавам: тази формула (тя е и основното логаритмично тъждество или, ако желаете, дефиницията на логаритъм) ще ви преследва много дълго време и ще „изскочи“ в повечето неочаквани места. Е, тя изплува. Нека да разгледаме нашето уравнение и тази формула:

\[\begin(align)& ((2)^(x))=3 \\& a=((b)^(((\log )_(b))a)) \\\end(align) \]

Ако приемем, че $a=3$ е оригиналното ни число отдясно, а $b=2$ е самата основа експоненциална функция, към който искаме да намалим дясната страна, получаваме следното:

\[\begin(align)& a=((b)^(((\log )_(b))a))\Rightarrow 3=((2)^(((\log )_(2))3 )); \\& ((2)^(x))=3\Стрелка надясно ((2)^(x))=((2)^(((\log )_(2))3))\Стрелка надясно x=( (\log )_(2))3. \\\край (подравняване)\]

Получихме малко странен отговор: $x=((\log )_(2))3$. В някоя друга задача мнозина биха имали съмнения при такъв отговор и биха започнали да проверяват решението си: ами ако някъде се е промъкнала грешка? Бързам да ви зарадвам: тук няма грешка, а логаритмите в корените на експоненциалните уравнения са напълно типична ситуация. Така че свиквайте.

Сега нека решим останалите две уравнения по аналогия:

\[\begin(align)& ((5)^(x))=15\Rightarrow ((5)^(x))=((5)^(((\log )_(5))15)) \Rightarrow x=((\log )_(5))15; \\& ((4)^(2x))=11\Стрелка надясно ((4)^(2x))=((4)^(((\log )_(4))11))\Стрелка надясно 2x=( (\log )_(4))11\Rightarrow x=\frac(1)(2)((\log )_(4))11. \\\край (подравняване)\]

това е! Между другото, последният отговор може да бъде написан по различен начин:

Въведохме фактор в аргумента на логаритъма. Но никой не ни спира да добавим този фактор към основата:

Освен това и трите опции са правилни - това е просто различни формизаписи на същия номер. Кое да изберете и запишете в това решение зависи от вас да решите.

Така се научихме да решаваме всякакви експоненциални уравнения от вида $((a)^(x))=b$, където числата $a$ и $b$ са строго положителни. Суровата реалност на нашия свят обаче е, че такива прости задачи ще се срещат много, много рядко. По-често ще срещнете нещо подобно:

\[\begin(align)& ((4)^(x))+((4)^(x-1))=((4)^(x+1))-11; \\& ((7)^(x+6))\cdot ((3)^(x+6))=((21)^(3x)); \\& ((100)^(x-1))\cdot ((2,7)^(1-x))=0,09. \\\край (подравняване)\]

И така, как можем да разрешим това? Може ли това изобщо да се реши? И ако е така, как?

Не изпадайте в паника. Всички тези уравнения могат бързо и лесно да бъдат сведени до прости формуликоито вече разгледахме. Просто трябва да запомните няколко трика от курса по алгебра. И разбира се, няма правила за работа с дипломи. Сега ще ви разкажа за всичко това. :)

Преобразуване на експоненциални уравнения

Първото нещо, което трябва да запомните: всяко експоненциално уравнение, независимо колко сложно може да бъде, по един или друг начин трябва да се сведе до най-простите уравнения - тези, които вече сме разгледали и които знаем как да решим. С други думи, схемата за решаване на всяко експоненциално уравнение изглежда така:

  1. Запишете първоначалното уравнение. Например: $((4)^(x))+((4)^(x-1))=((4)^(x+1))-11$;
  2. Направи някакви странни глупости. Или дори някои глупости, наречени "преобразуване на уравнение";
  3. На изхода вземете най-простите изрази от формата $((4)^(x))=4$ или нещо друго подобно. Освен това едно начално уравнение може да даде няколко такива израза наведнъж.

С първата точка всичко е ясно - дори моята котка може да напише уравнението на лист хартия. Третата точка също изглежда повече или по-малко ясна - вече сме решили цял куп такива уравнения по-горе.

Но какво да кажем за втората точка? Какви трансформации? Преобразуване на какво в какво? и как?

Е, нека да го разберем. На първо място бих искал да отбележа следното. Всички експоненциални уравнения са разделени на два вида:

  1. Уравнението е съставено от експоненциални функции с една и съща основа. Пример: $((4)^(x))+((4)^(x-1))=((4)^(x+1))-11$;
  2. Формулата съдържа експоненциални функции с различни основи. Примери: $((7)^(x+6))\cdot ((3)^(x+6))=((21)^(3x))$ и $((100)^(x-1) )\cdot ((2,7)^(1-x))=$0,09.

Да започнем с уравненията от първия тип – те са най-лесни за решаване. И при решаването им ще ни помогне такава техника като подчертаване на стабилни изрази.

Изолиране на стабилен израз

Нека да разгледаме това уравнение отново:

\[((4)^(x))+((4)^(x-1))=((4)^(x+1))-11\]

какво виждаме Четирите са издигнати на различни степени. Но всички тези степени са прости сборове на променливата $x$ с други числа. Ето защо е необходимо да запомните правилата за работа със степени:

\[\begin(align)& ((a)^(x+y))=((a)^(x))\cdot ((a)^(y)); \\& ((a)^(x-y))=((a)^(x)):((a)^(y))=\frac(((a)^(x)))(((a )^(y))). \\\край (подравняване)\]

Просто казано, събирането може да се преобразува в произведение на степените, а изваждането може лесно да се преобразува в деление. Нека се опитаме да приложим тези формули към степените от нашето уравнение:

\[\begin(align)& ((4)^(x-1))=\frac(((4)^(x)))(((4)^(1)))=((4)^ (x))\cdot \frac(1)(4); \\& ((4)^(x+1))=((4)^(x))\cdot ((4)^(1))=((4)^(x))\cdot 4. \ \\край (подравняване)\]

Нека пренапишем оригиналното уравнение, като вземем предвид този факт, и след това съберем всички членове отляво:

\[\begin(align)& ((4)^(x))+((4)^(x))\cdot \frac(1)(4)=((4)^(x))\cdot 4 -11; \\& ((4)^(x))+((4)^(x))\cdot \frac(1)(4)-((4)^(x))\cdot 4+11=0. \\\край (подравняване)\]

Първите четири члена съдържат елемента $((4)^(x))$ - нека го извадим от скобите:

\[\begin(align)& ((4)^(x))\cdot \left(1+\frac(1)(4)-4 \right)+11=0; \\& ((4)^(x))\cdot \frac(4+1-16)(4)+11=0; \\& ((4)^(x))\cdot \left(-\frac(11)(4) \right)=-11. \\\край (подравняване)\]

Остава да разделим двете страни на уравнението на дробта $-\frac(11)(4)$, т.е. по същество умножете по обърнатата дроб - $-\frac(4)(11)$. Получаваме:

\[\begin(align)& ((4)^(x))\cdot \left(-\frac(11)(4) \right)\cdot \left(-\frac(4)(11) \right )=-11\cdot \left(-\frac(4)(11) \right); \\& ((4)^(x))=4; \\& ((4)^(x))=((4)^(1)); \\& x=1. \\\край (подравняване)\]

това е! Редуцирахме първоначалното уравнение до най-простата му форма и получихме крайния отговор.

В същото време в процеса на решаване открихме (и дори го извадихме от скобата) общия множител $((4)^(x))$ - това е стабилен израз. Тя може да бъде обозначена като нова променлива или можете просто да я изразите внимателно и да получите отговора. както и да е ключов принципРешенията са както следва:

Намерете в оригиналното уравнение стабилен израз, съдържащ променлива, която лесно се разграничава от всички експоненциални функции.

Добрата новина е, че почти всяко експоненциално уравнение ви позволява да изолирате такъв стабилен израз.

Но лошата новина е, че тези изрази могат да бъдат доста трудни и могат да бъдат доста трудни за идентифициране. Така че нека да разгледаме още един проблем:

\[((5)^(x+2))+((0,2)^(-x-1))+4\cdot ((5)^(x+1))=2\]

Може би сега някой ще има въпрос: „Паша, убит ли си? Тук има различни бази - 5 и 0,2.” Но нека опитаме да преобразуваме степента към основа 0,2. Например, нека се отървем от десетичната дроб, като я намалим до обикновена:

\[((0,2)^(-x-1))=((0,2)^(-\left(x+1 \right)))=((\left(\frac(2)(10 ) \right))^(-\left(x+1 \right)))=((\left(\frac(1)(5) \right))^(-\left(x+1 \right)) )\]

Както можете да видите, числото 5 все пак се появи, макар и в знаменателя. В същото време индикаторът беше пренаписан като отрицателен. А сега нека си припомним един от най-важните правиларабота със степени:

\[((a)^(-n))=\frac(1)(((a)^(n)))\Rightarrow ((\left(\frac(1)(5) \right))^( -\left(x+1 \right)))=((\left(\frac(5)(1) \right))^(x+1))=((5)^(x+1))\ ]

Тук, разбира се, малко се излъгах. Тъй като за пълно разбиране формулата за премахване на отрицателните индикатори трябваше да бъде написана така:

\[((a)^(-n))=\frac(1)(((a)^(n)))=((\left(\frac(1)(a) \right))^(n ))\Rightarrow ((\left(\frac(1)(5) \right))^(-\left(x+1 \right)))=((\left(\frac(5)(1) \ надясно))^(x+1))=((5)^(x+1))\]

От друга страна, нищо не ни пречеше да работим само с дроби:

\[((\left(\frac(1)(5) \right))^(-\left(x+1 \right)))=((\left(((5)^(-1)) \ дясно))^(-\left(x+1 \right)))=((5)^(\left(-1 \right)\cdot \left(-\left(x+1 \right) \right) ))=((5)^(x+1))\]

Но в този случай трябва да можете да повишите степен до друга степен (нека ви напомня: в този случай индикаторите се сумират). Но не трябваше да „обръщам“ дробите - може би това ще бъде по-лесно за някои.

Във всеки случай оригиналното експоненциално уравнение ще бъде пренаписано като:

\[\begin(align)& ((5)^(x+2))+((5)^(x+1))+4\cdot ((5)^(x+1))=2; \\& ((5)^(x+2))+5\cdot ((5)^(x+1))=2; \\& ((5)^(x+2))+((5)^(1))\cdot ((5)^(x+1))=2; \\& ((5)^(x+2))+((5)^(x+2))=2; \\& 2\cdot ((5)^(x+2))=2; \\& ((5)^(x+2))=1. \\\край (подравняване)\]

Така се оказва, че първоначалното уравнение може да бъде решено дори по-просто от разгледаното по-рано: тук дори не е необходимо да избирате стабилен израз - всичко е намалено от само себе си. Остава само да запомним, че $1=((5)^(0))$, от което получаваме:

\[\begin(align)& ((5)^(x+2))=((5)^(0)); \\& x+2=0; \\& x=-2. \\\край (подравняване)\]

Това е решението! Получихме окончателния отговор: $x=-2$. В същото време бих искал да отбележа една техника, която значително опрости всички изчисления за нас:

В експоненциалните уравнения не забравяйте да се отървете от десетични знаци, конвертирайте ги в обикновени. Това ще ви позволи да видите едни и същи бази от градуси и значително ще опрости решението.

Нека сега да преминем към повече сложни уравнения, в който има различни основи, които изобщо не се свеждат една към друга с помощта на степени.

Използване на свойството Degrees

Нека ви напомня, че имаме още две особено сурови уравнения:

\[\begin(align)& ((7)^(x+6))\cdot ((3)^(x+6))=((21)^(3x)); \\& ((100)^(x-1))\cdot ((2,7)^(1-x))=0,09. \\\край (подравняване)\]

Основната трудност тук е, че не е ясно какво да се даде и на каква база. Къде са устойчивите изрази? Къде са същите основания? Няма нищо от това.

Но нека се опитаме да тръгнем по различен начин. Ако няма готови еднакви бази, можете да опитате да ги намерите чрез факторизиране на съществуващите бази.

Да започнем с първото уравнение:

\[\begin(align)& ((7)^(x+6))\cdot ((3)^(x+6))=((21)^(3x)); \\& 21=7\cdot 3\Rightarrow ((21)^(3x))=((\left(7\cdot 3 \right))^(3x))=((7)^(3x))\ cdot((3)^(3x)). \\\край (подравняване)\]

Но можете да направите обратното - да направите числото 21 от числата 7 и 3. Това е особено лесно да се направи отляво, тъй като показателите на двете степени са еднакви:

\[\begin(align)& ((7)^(x+6))\cdot ((3)^(x+6))=((\left(7\cdot 3 \right))^(x+ 6 ))=((21)^(x+6)); \\& ((21)^(x+6))=((21)^(3x)); \\& x+6=3x; \\& 2x=6; \\& x=3. \\\край (подравняване)\]

това е! Извадихте експонентата извън продукта и веднага получихте красиво уравнение, което може да се реши в няколко реда.

Сега нека разгледаме второто уравнение. Тук всичко е много по-сложно:

\[((100)^(x-1))\cdot ((2.7)^(1-x))=0.09\]

\[((100)^(x-1))\cdot ((\left(\frac(27)(10) \right))^(1-x))=\frac(9)(100)\]

В този случай дробите се оказаха нередуцируеми, но ако нещо може да се намали, не забравяйте да го намалите. Често ще се появят интересни причини, с които вече можете да работите.

За съжаление не се появи нищо особено за нас. Но виждаме, че показателите отляво в продукта са противоположни:

Нека ви напомня: за да се отървете от знака минус в индикатора, просто трябва да „обърнете“ дробта. Е, нека пренапишем оригиналното уравнение:

\[\begin(align)& ((100)^(x-1))\cdot ((\left(\frac(10)(27) \right))^(x-1))=\frac(9 )(100); \\& ((\left(100\cdot \frac(10)(27) \right))^(x-1))=\frac(9)(100); \\& ((\left(\frac(1000)(27) \right))^(x-1))=\frac(9)(100). \\\край (подравняване)\]

Във втория ред просто изпълнихме общ показателот продукта извън скоби съгласно правилото $((a)^(x))\cdot ((b)^(x))=((\left(a\cdot b \right))^(x)) $, а в последното просто умножи числото 100 по дроб.

Сега имайте предвид, че числата отляво (в основата) и отдясно са донякъде сходни. как? Да, очевидно е: те са степени на едно и също число! Ние имаме:

\[\begin(align)& \frac(1000)(27)=\frac(((10)^(3)))(((3)^(3)))=((\left(\frac( 10)(3) \right))^(3)); \\& \frac(9)(100)=\frac(((3)^(2)))(((10)^(3)))=((\left(\frac(3)(10) \десен))^(2)). \\\край (подравняване)\]

Така нашето уравнение ще бъде пренаписано, както следва:

\[((\left(((\left(\frac(10)(3) \right))^(3)) \right))^(x-1))=((\left(\frac(3) )(10)\вдясно))^(2))\]

\[((\left(((\left(\frac(10)(3) \right))^(3)) \right))^(x-1))=((\left(\frac(10) )(3) \right))^(3\left(x-1 \right)))=((\left(\frac(10)(3) \right))^(3x-3))\]

В този случай вдясно можете да получите и степен със същата основа, за която е достатъчно просто да „обърнете“ фракцията:

\[((\left(\frac(3)(10) \right))^(2))=((\left(\frac(10)(3) \right))^(-2))\]

Нашето уравнение най-накрая ще приеме формата:

\[\begin(align)& ((\left(\frac(10)(3) \right))^(3x-3))=((\left(\frac(10)(3) \right)) ^(-2)); \\& 3x-3=-2; \\& 3x=1; \\& x=\frac(1)(3). \\\край (подравняване)\]

Това е решението. Основната му идея се свежда до това, че дори и с на различни основанияние се опитваме, с кука или измама, да сведем тези бази до едно и също нещо. За това ни помагат елементарни трансформации на уравнения и правила за работа със степени.

Но какви правила и кога да използвате? Как разбирате, че в едно уравнение трябва да разделите двете страни на нещо, а в друго трябва да разложите основата на експоненциалната функция?

Отговорът на този въпрос ще дойде с опита. Първо опитайте ръката си прости уравнения, а след това постепенно усложнявайте задачите - и много скоро вашите умения ще бъдат достатъчни, за да решите всяко експоненциално уравнение от същия Единен държавен изпит или всяка независима / тестова работа.

И за да ви помогна в този труден въпрос, предлагам да изтеглите набор от уравнения за независимо решение. Всички уравнения имат отговори, така че винаги можете да се тествате.

Лекция: “Методи за решаване на експоненциални уравнения.”

1 . Експоненциални уравнения.

Уравнения, съдържащи неизвестни в показатели, се наричат ​​експоненциални уравнения. Най-простото от тях е уравнението ax = b, където a > 0, a ≠ 1.

1) При b< 0 и b = 0 это уравнение, согласно свойству 1 показательной функции, не имеет решения.

2) За b > 0, използвайки монотонността на функцията и теоремата за корена, уравнението има единствен корен. За да го намерим, b трябва да се представи във формата b = aс, аx = bс ó x = c или x = logab.

Експоненциалните уравнения чрез алгебрични трансформации водят до стандартни уравнения, които се решават с помощта на следните методи:

1) метод на намаляване до една база;

2) метод на оценка;

3) графичен метод;

4) метод за въвеждане на нови променливи;

5) метод на факторизация;

6) индикативен – степенни уравнения;

7) демонстративен с параметър.

2 . Начин на намаляване на една база.

Методът се основава на следното свойство на степените: ако две степени са равни и основите им са равни, тогава техните показатели са равни, т.е. трябва да се опитате да редуцирате уравнението до формата

Примери. Решете уравнението:

1 . 3x = 81;

Нека представим дясната страна на уравнението във формата 81 = 34 и напишем уравнението, еквивалентно на оригинала 3 x = 34; x = 4. Отговор: 4.

2. https://pandia.ru/text/80/142/images/image004_8.png" width="52" height="49">и нека преминем към уравнението за степени 3x+1 = 3 – 5x; 8x = 4; х = 0,5.

3. https://pandia.ru/text/80/142/images/image006_8.png" width="105" height="47">

Обърнете внимание, че числата 0,2, 0,04, √5 и 25 представляват степени на 5. Нека се възползваме от това и да трансформираме оригиналното уравнение, както следва:

, откъдето 5-x-1 = 5-2x-2 ó - x – 1 = - 2x – 2, от което намираме решението x = -1. Отговор: -1.

5. 3x = 5. По дефиниция на логаритъм x = log35. Отговор: log35.

6. 62x+4 = 33x. 2x+8.

Нека пренапишем уравнението във формата 32x+4.22x+4 = 32x.2x+8, т.е..png" width="181" height="49 src="> Следователно x – 4 =0, x = 4. Отговор: 4.

7 . 2∙3x+1 - 6∙3x-2 - 3x = 9. Използвайки свойствата на степените, записваме уравнението във формата 6∙3x - 2∙3x – 3x = 9, след което 3∙3x = 9, 3x+1 = 32, т.е. т.е. x+1 = 2, x =1. Отговор: 1.

Проблемна банка №1.

Решете уравнението:

Тест №1.

1) 0 2) 4 3) -2 4) -4

A2 32x-8 = √3.

1)17/4 2) 17 3) 13/2 4) -17/4

A3

1) 3;1 2) -3;-1 3) 0;2 4) няма корени

1) 7;1 2) няма корени 3) -7;1 4) -1;-7

A5

1) 0;2; 2) 0;2;3 3) 0 4) -2;-3;0

A6

1) -1 2) 0 3) 2 4) 1

Тест No2

A1

1) 3 2) -1;3 3) -1;-3 4) 3;-1

A2

1) 14/3 2) -14/3 3) -17 4) 11

A3

1) 2;-1 2) няма корени 3) 0 4) -2;1

A4

1) -4 2) 2 3) -2 4) -4;2

A5

1) 3 2) -3;1 3) -1 4) -1;3

3 Метод на оценка.

Коренна теорема: ако функцията f(x) нараства (намалява) в интервала I, числото a е всяка стойност, взета от f в този интервал, тогава уравнението f(x) = a има един корен в интервала I.

При решаване на уравнения с помощта на метода на оценка се използват тази теорема и свойствата на монотонността на функцията.

Примери. Решете уравнения: 1. 4x = 5 – x.

Решение. Нека пренапишем уравнението като 4x +x = 5.

1. ако x = 1, тогава 41+1 = 5, 5 = 5 е вярно, което означава, че 1 е коренът на уравнението.

Функция f(x) = 4x – нараства върху R, и g(x) = x – нараства върху R => h(x)= f(x)+g(x) нараства върху R, като сумата от нарастващите функции, тогава x = 1 е единственият корен на уравнението 4x = 5 – x. Отговор: 1.

2.

Решение. Нека пренапишем уравнението във формата .

1. ако x = -1, тогава , 3 = 3 е вярно, което означава, че x = -1 е коренът на уравнението.

2. докаже, че е единственият.

3. Функция f(x) = - намалява върху R, а g(x) = - x – намалява върху R=> h(x) = f(x)+g(x) – намалява върху R, като сумата от намаляващи функции. Това означава, че според теоремата за корена x = -1 е единственият корен на уравнението. Отговор: -1.

Проблемна банка №2. Решете уравнението

а) 4x + 1 =6 – x;

б)

в) 2x – 2 =1 – x;

4. Метод за въвеждане на нови променливи.

Методът е описан в параграф 2.1. Въвеждането на нова променлива (заместване) обикновено се извършва след трансформации (опростяване) на членовете на уравнението. Нека да разгледаме примерите.

Примери. РРешете уравнението: 1. .

Нека пренапишем уравнението по различен начин: https://pandia.ru/text/80/142/images/image030_0.png" width="128" height="48 src="> т.е..png" width="210" height = "45">

Решение. Нека пренапишем уравнението по различен начин:

Да обозначим https://pandia.ru/text/80/142/images/image035_0.png" width="245" height="57"> - не е подходящо.

t = 4 => https://pandia.ru/text/80/142/images/image037_0.png" width="268" height="51"> - ирационално уравнение. Отбелязваме, че

Решението на уравнението е x = 2,5 ≤ 4, което означава, че 2,5 е коренът на уравнението. Отговор: 2.5.

Решение. Нека пренапишем уравнението във формата и разделим двете му страни на 56x+6 ≠ 0. Получаваме уравнението

2x2-6x-7 = 2x2-6x-8 +1 = 2(x2-3x-4)+1, t..png" width="118" height="56">

Корените на квадратното уравнение са t1 = 1 и t2<0, т. е..png" width="200" height="24">.

Решение . Нека пренапишем уравнението във формата

и имайте предвид, че това е хомогенно уравнение от втора степен.

Разделяме уравнението на 42x, получаваме

Нека заменим https://pandia.ru/text/80/142/images/image049_0.png" width="16" height="41 src="> .

Отговор: 0; 0,5.

Проблемна банка №3. Решете уравнението

б)

G)

Тест No3 с избор на отговори. Минимално ниво.

A1

1) -0,2;2 2) log52 3) –log52 4) 2

A2 0,52x – 3 0,5x +2 = 0.

1) 2;1 2) -1;0 3) няма корени 4) 0

1) 0 2) 1; -1/3 3) 1 4) 5

A4 52x-5x - 600 = 0.

1) -24;25 2) -24,5; 25,5 3) 25 4) 2

1) няма корени 2) 2;4 3) 3 4) -1;2

Тест No4 с избор на отговори. Общо ниво.

A1

1) 2;1 2) ½;0 3)2;0 4) 0

A2 2x – (0,5)2x – (0,5)x + 1 = 0

1) -1;1 2) 0 3) -1;0;1 4) 1

1) 64 2) -14 3) 3 4) 8

1)-1 2) 1 3) -1;1 4) 0

A5

1) 0 2) 1 3) 0;1 4) няма корени

5. Метод на факторизиране.

1. Решете уравнението: 5x+1 - 5x-1 = 24.

Solution..png" width="169" height="69"> , от където

2. 6x + 6x+1 = 2x + 2x+1 + 2x+2.

Решение. Нека поставим 6x извън скобите от лявата страна на уравнението и 2x от дясната страна. Получаваме уравнението 6x(1+6) = 2x(1+2+4) ó 6x = 2x.

Тъй като 2x >0 за всички x, можем да разделим двете страни на това уравнение на 2x, без да се страхуваме от загуба на решения. Получаваме 3x = 1ó x = 0.

3.

Решение. Нека решим уравнението, като използваме метода на факторизиране.

Нека изберем квадрата на бинома

4. https://pandia.ru/text/80/142/images/image067_0.png" width="500" height="181">

x = -2 е коренът на уравнението.

Уравнение x + 1 = 0 " style="border-collapse:collapse;border:none">

A1 5x-1 +5x -5x+1 =-19.

1) 1 2) 95/4 3) 0 4) -1

A2 3x+1 +3x-1 =270.

1) 2 2) -4 3) 0 4) 4

A3 32x + 32x+1 -108 = 0. x=1,5

1) 0,2 2) 1,5 3) -1,5 4) 3

1) 1 2) -3 3) -1 4) 0

A5 2x -2x-4 = 15. x=4

1) -4 2) 4 3) -4;4 4) 2

Тест No6 Общо ниво.

A1 (22x-1)(24x+22x+1)=7.

1) ½ 2) 2 3) -1;3 4) 0,2

A2

1) 2,5 2) 3;4 3) log43/2 4) 0

A3 2x-1-3x=3x-1-2x+2.

1) 2 2) -1 3) 3 4) -3

A4

1) 1,5 2) 3 3) 1 4) -4

A5

1) 2 2) -2 3) 5 4) 0

6. Експоненциално – степенни уравнения.

В съседство с експоненциалните уравнения са така наречените уравнения с експоненциална степен, т.е. уравнения с формата (f(x))g(x) = (f(x))h(x).

Ако е известно, че f(x)>0 и f(x) ≠ 1, тогава уравнението, подобно на експоненциалното, се решава чрез приравняване на показателите g(x) = f(x).

Ако условието не изключва възможността f(x)=0 и f(x)=1, тогава трябва да вземем предвид тези случаи, когато решаваме експоненциално уравнение.

1..png" width="182" height="116 src=">

2.

Решение. x2 +2x-8 – има смисъл за всяко x, защото е полином, което означава, че уравнението е еквивалентно на съвкупността

https://pandia.ru/text/80/142/images/image078_0.png" width="137" height="35">

б)

7. Експоненциални уравнения с параметри.

1. За какви стойности на параметъра p има уравнение 4 (5 – 3)2 +4p2–3p = 0 (1) единственото решение?

Решение. Нека въведем замяната 2x = t, t > 0, тогава уравнение (1) ще приеме формата t2 – (5p – 3)t + 4p2 – 3p = 0. (2)

Дискриминант на уравнение (2) D = (5p – 3)2 – 4(4p2 – 3p) = 9(p – 1)2.

Уравнение (1) има уникално решение, ако уравнение (2) има един положителен корен. Това е възможно в следните случаи.

1. Ако D = 0, т.е. p = 1, тогава уравнение (2) ще приеме формата t2 – 2t + 1 = 0, следователно t = 1, следователно уравнение (1) има уникално решение x = 0.

2. Ако p1, тогава 9(p – 1)2 > 0, тогава уравнение (2) има два различни корена t1 = p, t2 = 4p – 3. Условията на задачата са изпълнени от набор от системи

Замествайки t1 и t2 в системите, имаме

https://pandia.ru/text/80/142/images/image084_0.png" alt="no35_11" width="375" height="54"> в зависимости от параметра a?!}

Решение. Нека тогава уравнение (3) ще приеме формата t2 – 6t – a = 0. (4)

Нека намерим стойностите на параметъра a, за които поне един корен от уравнение (4) отговаря на условието t> 0.

Нека въведем функцията f(t) = t2 – 6t – a. Възможни са следните случаи.

https://pandia.ru/text/80/142/images/image087.png" alt="http://1september.ru/ru/mat/2002/35/no35_14.gif" align="left" width="215" height="73 src=">где t0 - абсцисса вершины параболы и D - дискриминант квадратного трехчлена f(t);!}

https://pandia.ru/text/80/142/images/image089.png" alt="http://1september.ru/ru/mat/2002/35/no35_16.gif" align="left" width="60" height="51 src=">!}

Случай 2. Уравнение (4) има единствено положително решение, ако

D = 0, ако a = – 9, тогава уравнение (4) ще приеме формата (t – 3)2 = 0, t = 3, x = – 1.

Случай 3. Уравнение (4) има два корена, но единият от тях не удовлетворява неравенството t > 0. Това е възможно, ако

https://pandia.ru/text/80/142/images/image092.png" alt="no35_17" width="267" height="63">!}

Така, за a 0, уравнение (4) има един положителен корен . Тогава уравнение (3) има единствено решение

Когато а< – 9 уравнение (3) корней не имеет.

ако а< – 9, то корней нет; если – 9 < a < 0, то
ако a = – 9, тогава x = – 1;

ако a  0, тогава

Нека сравним методите за решаване на уравнения (1) и (3). Обърнете внимание, че при решаването на уравнение (1) се сведе до квадратно уравнение, чийто дискриминант е перфектен квадрат; По този начин корените на уравнение (2) бяха незабавно изчислени с помощта на формулата за корените на квадратно уравнение и след това бяха направени заключения относно тези корени. Уравнение (3) е намалено до квадратно уравнение (4), чийто дискриминант не е перфектен квадрат, следователно, когато се решава уравнение (3), е препоръчително да се използват теореми за местоположението на корените на квадратен трином и графичен модел. Обърнете внимание, че уравнение (4) може да бъде решено с помощта на теоремата на Виета.

Нека решим по-сложни уравнения.

Задача 3: Решете уравнението

Решение. ODZ: x1, x2.

Да въведем заместител. Нека 2x = t, t > 0, тогава в резултат на трансформации уравнението ще приеме формата t2 + 2t – 13 – a = 0. (*) Нека намерим стойностите на a, за които поне един корен от уравнението (*) удовлетворява условието t > 0.

https://pandia.ru/text/80/142/images/image098.png" alt="http://1september.ru/ru/mat/2002/35/no35_23.gif" align="left" width="71" height="68 src=">где t0 - абсцисса вершины f(t) = t2 + 2t – 13 – a, D - дискриминант квадратного трехчлена f(t).!}

https://pandia.ru/text/80/142/images/image100.png" alt="http://1september.ru/ru/mat/2002/35/no35_25.gif" align="left" width="360" height="32 src=">!}

https://pandia.ru/text/80/142/images/image102.png" alt="http://1september.ru/ru/mat/2002/35/no35_27.gif" align="left" width="218" height="42 src=">!}

Отговор: ако a > – 13, a  11, a  5, тогава ако a – 13,

a = 11, a = 5, тогава няма корени.

Списък на използваната литература.

1. Гузеев основите на образователната технология.

2. Технология на Гузеев: от рецепция до философия.

М. „Училищен директор” № 4, 1996 г

3. Гузеев и организационни формиобучение.

4. Гузеев и практиката на интегралната образователна технология.

М. “Народно образование”, 2001

5. Гузеев от формите на урок - семинар.

Математика в училище № 2, 1987 г. с. 9 – 11.

6. Seleuko образователни технологии.

М. „Народно образование“, 1998 г

7. Episheva ученици да учат математика.

М. "Просвещение", 1990 г

8. Иванова подготвя уроци – работилници.

Математика в училище № 6, 1990 стр. 37 – 40.

9. Модел на обучение по математика на Смирнов.

Математика в училище № 1, 1997 г., стр. 32 – 36.

10. Тарасенко начини за организиране на практическа работа.

Математика в училище № 1, 1993 г., стр. 27 – 28.

11. За един от видовете самостоятелна работа.

Математика в училище No2, 1994, с. 63 – 64.

12. Хазанкин креативностученици.

Математика в училище № 2, 1989 стр. 10.

13. Сканави. Издателство, 1997г

14. и др. Алгебра и наченки на анализа. Дидактически материали за

15. Задачи на Кривоногов по математика.

М. “Първи септември”, 2002 г

16. Черкасов. Помагало за гимназисти и

влизане в университети. “A S T - пресшкола”, 2002г

17. Жевняк за постъпващите във ВУЗ.

Минск и Руската федерация „Ревю“, 1996 г

18. Писмена Г. Подготовка за изпит по математика. М. Ролф, 1999

19. и т. Научаване за решаване на уравнения и неравенства.

М. "Интелект - център", 2003 г

20. и др. Образователни и обучителни материали за подготовка за EGE.

М. "Разузнаване - център", 2003 и 2004 г.

21 и други опции. Изпитателен център на Министерството на отбраната на Руската федерация, 2002, 2003 г.

22. Уравнения на Голдберг. "Квант" № 3, 1971 г

23. Волович М. Как успешно да преподаваме математика.

Математика, 1997 №3.

24 Окунев за урока, деца! М. Образование, 1988

25. Yakimanskaya - ориентирано обучение в училище.

26. Liimets работят в клас. М. Знание, 1975

На етапа на подготовка за финалния тест учениците от гимназията трябва да подобрят знанията си по темата „Експоненциални уравнения“. Опитът от минали години показва, че подобни задачи създават определени трудности за учениците. Следователно учениците от гимназията, независимо от нивото на подготовка, трябва да овладеят напълно теорията, да запомнят формулите и да разберат принципа на решаване на такива уравнения. След като са се научили да се справят с този тип проблеми, завършилите могат да разчитат на високи резултати при полагане на Единния държавен изпит по математика.

Пригответе се за изпитно тестване с Школково!

Когато преглеждат материалите, които са покрили, много ученици се сблъскват с проблема да намерят формулите, необходими за решаване на уравнения. Училищният учебник не винаги е под ръка и подбор необходимата информацияпо темата в Интернет отнема много време.

Образователният портал Школково кани учениците да използват нашата база от знания. Изпълняваме изцяло нов методподготовка за финалния тест. Като изучавате на нашия уебсайт, ще можете да идентифицирате пропуски в знанията и да обърнете внимание на онези задачи, които причиняват най-много трудности.

Учителите в Школково са събрали, систематизирали и представили всичко необходимо за успешното преминаване Материал за единен държавен изпитв най-проста и достъпна форма.

Основните дефиниции и формули са представени в раздела „Теоретична основа”.

За да разберете по-добре материала, ви препоръчваме да се упражнявате да изпълнявате задачите. Внимателно прегледайте примерите на експоненциални уравнения с решения, представени на тази страница, за да разберете алгоритъма за изчисление. След това продължете да изпълнявате задачи в раздела „Директории“. Можете да започнете с най-лесните задачи или да преминете направо към решаване на сложни експоненциални уравнения с няколко неизвестни или . Базата данни с упражнения на нашия уебсайт непрекъснато се допълва и актуализира.

Тези примери с индикатори, които са ви затруднили, могат да бъдат добавени към „Любими“. По този начин можете бързо да ги намерите и да обсъдите решението с вашия учител.

За да преминете успешно Единния държавен изпит, учете на портала Школково всеки ден!

Решаване на експоненциални уравнения. Примери.

внимание!
Има допълнителни
материали в специален раздел 555.
За тези, които са много "не много..."
И за тези, които „много...“)

какво стана експоненциално уравнение? Това е уравнение, в което присъстват неизвестните (x) и изразите с тях показателинякои степени. И само там! това е важно

Ето го примери за експоненциални уравнения:

3 х 2 х = 8 х+3

Обърнете внимание! В основите на градусите (по-долу) - само числа. IN показателистепени (по-горе) - голямо разнообразие от изрази с X. Ако внезапно X се появи в уравнението някъде извън индикатор, например:

това вече ще е уравнение от смесен тип. Такива уравнения нямат ясни правила за решаването им. Засега няма да ги разглеждаме. Тук ще се занимаваме с решаване на експоненциални уравненияв най-чист вид.

Всъщност дори чистите експоненциални уравнения не винаги се решават ясно. Но има определени видове експоненциални уравнения, които могат и трябва да бъдат решени. Това са видовете, които ще разгледаме.

Решаване на прости експоненциални уравнения.

Първо, нека решим нещо много основно. Например:

Дори и без никакви теории, чрез проста селекция е ясно, че x = 2. Нищо повече, нали!? Никоя друга стойност на X не работи. Сега нека да разгледаме решението на това сложно експоненциално уравнение:

какво направихме Ние всъщност просто изхвърлихме същите бази (тройки). Напълно изхвърлен. И добрата новина е, че ударихме гвоздея на главата!

Наистина, ако в едно експоненциално уравнение има ляво и дясно идентиченчисла във всякакви степени, тези числа могат да бъдат премахнати и показателите могат да бъдат изравнени. Математиката позволява. Остава да решим много по-просто уравнение. Страхотно, нали?)

Нека обаче твърдо запомним: Можете да премахнете бази само когато базовите числа отляво и отдясно са в прекрасна изолация!Без никакви съседи и коефициенти. Да кажем в уравненията:

2 x +2 x+1 = 2 3, или

двойки не могат да бъдат премахнати!

Е, усвоихме най-важното. Как да се отървем от злото демонстративни изразикъм по-прости уравнения.

— Такива са времената! - казвате вие. „Кой би дал такъв примитивен урок на контролни и изпити!?“

Трябва да се съглася. Никой няма. Но сега знаете накъде да се стремите, когато решавате трудни примери. Необходимо е да го доведете до формата, където отляво и отдясно е едно и също базово число. Тогава всичко ще бъде по-лесно. Всъщност това е класика на математиката. Взимаме оригиналния пример и го трансформираме в желания насум. Според правилата на математиката, разбира се.

Нека да разгледаме примери, които изискват допълнителни усилия, за да ги сведем до най-простите. Да им се обадим прости експоненциални уравнения.

Решаване на прости експоненциални уравнения. Примери.

При решаване на експоненциални уравнения основните правила са действия със степени.Без познаване на тези действия нищо няма да работи.

Към действията със степени трябва да се добави лично наблюдение и изобретателност. Имаме ли нужда от еднакви базови числа? Така че ние ги търсим в примера в изрична или криптирана форма.

Да видим как това се прави на практика?

Нека ни бъде даден пример:

2 2x - 8 x+1 = 0

Първият проницателен поглед е към основания.Те... Те са различни! Две и осем. Но е твърде рано да се обезсърчавате. Време е да си припомним това

Две и осем са роднини по степен.) Напълно възможно е да напишете:

8 x+1 = (2 3) x+1

Ако си припомним формулата от операции със степени:

(a n) m = a nm,

това работи страхотно:

8 x+1 = (2 3) x+1 = 2 3(x+1)

Оригиналният пример започна да изглежда така:

2 2x - 2 3(x+1) = 0

Ние прехвърляме 2 3 (x+1)вдясно (никой не е отменил елементарните математически операции!), получаваме:

2 2x = 2 3(x+1)

Това е на практика всичко. Премахване на основите:

Разрешаваме това чудовище и получаваме

Това е правилният отговор.

В този пример познаването на правомощията на две ни помогна. Ние идентифициранив осем има криптирана двойка. Тази техника (криптиране общи основанияпод различни номера) е много популярна техника в експоненциалните уравнения! Да, и в логаритми също. Трябва да можете да разпознавате степени на други числа в числата. Това е изключително важно за решаване на експоненциални уравнения.

Факт е, че повишаването на произволно число на произволна степен не е проблем. Умножете дори на хартия и това е. Например всеки може да повдигне 3 на пета степен. 243 ще се получи, ако знаете таблицата за умножение.) Но в експоненциалните уравнения много по-често не е необходимо да се повдига на степен, а обратното... Разберете какво число до каква степенсе крие зад числото 243, или, да речем, 343... Никой калкулатор няма да ви помогне тук.

Трябва да знаете степента на някои числа по поглед, нали... Да се ​​упражняваме?

Определете на какви степени и какви числа са числата:

2; 8; 16; 27; 32; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729, 1024.

Отговори (в бъркотия, разбира се!):

5 4 ; 2 10 ; 7 3 ; 3 5 ; 2 7 ; 10 2 ; 2 6 ; 3 3 ; 2 3 ; 2 1 ; 3 6 ; 2 9 ; 2 8 ; 6 3 ; 5 3 ; 3 4 ; 2 5 ; 4 4 ; 4 2 ; 2 3 ; 9 3 ; 4 5 ; 8 2 ; 4 3 ; 8 3 .

Ако се вгледате внимателно, можете да видите странен факт. Има значително повече отговори, отколкото задачи! Е, случва се... Например 2 6, 4 3, 8 2 - всичко това е 64.

Да приемем, че сте взели под внимание информацията за познаването на числата.) Позволете ми също да ви напомня, че за решаване на експоненциални уравнения използваме всичкизапас от математически знания. Включително и от младши и среден клас. Не си отишъл направо в гимназията, нали?)

Например, когато решавате експоненциални уравнения, поставянето на общия множител извън скоби често помага (здравейте на 7 клас!). Да разгледаме един пример:

3 2x+4 -11 9 x = 210

И отново, първият поглед е към основите! Основите на степените са различни... Три и девет. Но ние искаме да са същите. Е, в този случай желанието е напълно изпълнено!) Защото:

9 x = (3 2) x = 3 2x

Използване на същите правила за работа със степени:

3 2x+4 = 3 2x ·3 4

Това е страхотно, можете да го запишете:

3 2x 3 4 - 11 3 2x = 210

Дадохме пример по същите причини. И какво следва!? Не можете да изхвърляте тройки... Задънена улица?

Съвсем не. Запомнете най-универсалното и силно правило за вземане на решения всички задачи по математика:

Ако не знаете от какво имате нужда, направете каквото можете!

Вижте, всичко ще се получи).

Какво има в това експоненциално уравнение можеправя? Да, от лявата страна просто моли да бъде извадено от скоби! Общ множител 3 2x ясно загатва за това. Нека опитаме и тогава ще видим:

3 2x (3 4 - 11) = 210

3 4 - 11 = 81 - 11 = 70

Примерът става все по-добър и по-добър!

Спомняме си, че за да елиминираме основания, се нуждаем от чиста степен, без никакви коефициенти. Числото 70 ни притеснява. Така че разделяме двете страни на уравнението на 70, получаваме:

Опа! Всичко се оправи!

Това е окончателният отговор.

Случва се обаче рулирането на същите основания да работи, но премахването им не. Това се случва в други видове експоненциални уравнения. Нека овладеем този тип.

Замяна на променлива при решаване на експоненциални уравнения. Примери.

Нека решим уравнението:

4 x - 3 2 x +2 = 0

Първо - както обикновено. Да преминем към една база. До двойка.

4 x = (2 2) x = 2 2x

Получаваме уравнението:

2 2x - 3 2 x +2 = 0

И това е мястото, където се мотаем. Предишните техники няма да работят, както и да го погледнете. Ще трябва да извадим друг мощен и универсален метод от нашия арсенал. Нарича се променлива замяна.

Същността на метода е изненадващо проста. Вместо една сложна икона (в нашия случай - 2 x) пишем друга, по-проста (например - t). Такава на пръв поглед безсмислена замяна води до невероятни резултати!) Всичко става ясно и разбираемо!

Така че нека

Тогава 2 2x = 2 x2 = (2 x) 2 = t 2

В нашето уравнение заместваме всички степени с x с t:

Е, просветва ли ти?) Квадратни уравненияЗабравихте ли вече? Решавайки чрез дискриминанта, получаваме:

Основното нещо тук е да не спираме, както се случва... Това все още не е отговорът, имаме нужда от x, а не от t. Да се ​​върнем на Х-овете, т.е. правим обратна замяна. Първо за t 1:

следователно

Намерен е един корен. Търсим втория от t 2:

Хм... 2 х отляво, 1 отдясно... Проблем? Съвсем не! Достатъчно е да запомните (от операции със степени, да...), че единица е всякаквичисло на нулева степен. Всякакви. Каквото е необходимо ние ще го монтираме. Имаме нужда от две. означава:

Това е сега. Имаме 2 корена:

Това е отговорът.

При решаване на експоненциални уравнениянакрая понякога завършвате с някакъв вид неловко изражение. Тип:

Седем не може да се преобразува в две чрез обикновена степен. Те не са роднини... Как да сме? Някой може да е объркан ... Но човекът, който е прочел в този сайт темата "Какво е логаритъм?" , само се усмихва пестеливо и записва със твърда ръка абсолютно верния отговор:

В задачи „Б” на Единния държавен изпит не може да има такъв отговор. Там се изисква конкретен номер. Но в задачи „C“ е лесно.

Този урок предоставя примери за решаване на най-често срещаните експоненциални уравнения. Нека подчертаем основните точки.

Практически съвети:

1. На първо място разглеждаме основаниястепени. Чудим се дали е възможно да ги направим идентичен.Нека се опитаме да направим това чрез активно използване действия със степени.Не забравяйте, че числата без х също могат да се преобразуват в степени!

2. Опитваме се да доведем експоненциалното уравнение до вида, когато отляво и отдясно има идентиченчисла във всякакви степени. Ние използваме действия със степениИ факторизация.Това, което може да се преброи в числа, ние го броим.

3. Ако вторият съвет не работи, опитайте да използвате замяна на променливи. Резултатът може да бъде уравнение, което може лесно да бъде решено. Най-често - квадрат. Или дробно, което също се свежда до квадрат.

4. За да решавате успешно експоненциални уравнения, трябва да знаете степените на някои числа нагледно.

Както обикновено, в края на урока вие сте поканени да решите малко.) Сами. От просто към сложно.

Решете експоненциални уравнения:

По-трудно:

2 x+3 - 2 x+2 - 2 x = 48

9 x - 8 3 x = 9

2 x - 2 0,5x+1 - 8 = 0

Намерете произведението на корените:

2 3 + 2 x = 9

проработи ли

Добре тогава най-сложният пример(решен обаче в ума...):

7 0,13x + 13 0,7x+1 + 2 0,5x+1 = -3

Какво по-интересно? Тогава ето ви лош пример. Доста изкушаващо за повишена трудност. Нека намекна, че в този пример това, което ви спасява, е изобретателността и най-универсалното правило за решаване на всички математически задачи.)

2 5x-1 3 3x-1 5 2x-1 = 720 x

По-прост пример, за релакс):

9 2 x - 4 3 x = 0

И за десерт. Намерете сумата от корените на уравнението:

x 3 x - 9x + 7 3 x - 63 = 0

да, да! Това е уравнение от смесен тип! Което не разгледахме в този урок. Защо да ги обмисляте, те трябва да бъдат решени!) Този урок е напълно достатъчен за решаване на уравнението. Е, находчивост трябва... И дано ти помогне седми клас (това е подсказка!).

Отговори (в безпорядък, разделени с точка и запетая):

1; 2; 3; 4; няма решения; 2; -2; -5; 4; 0.

Всичко успешно ли е? страхотно

Някакви проблеми? Няма въпрос! В специален раздел 555 всички тези експоненциални уравнения се решават с подробни обяснения. Какво, защо и защо. И, разбира се, има допълнителна ценна информация за работа с всякакви експоненциални уравнения. Не само тези.)

Един последен забавен въпрос за разглеждане. В този урок работихме с експоненциални уравнения. Защо не казах нито дума за ODZ тук?В уравненията това е много важно нещо, между другото...

Ако харесвате този сайт...

Между другото, имам още няколко интересни сайта за вас.)

Можете да практикувате решаване на примери и да разберете вашето ниво. Тестване с незабавна проверка. Да учим - с интерес!)

Можете да се запознаете с функции и производни.

Публикации по темата